Skip to main content

Detecting Extremely Small Lesions in Mouse Brain MRI with Point Annotations via Multi-task Learning

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12966))

Included in the following conference series:

Abstract

Detection of small lesions in magnetic resonance imaging (MRI) images is one of the most challenging tasks. Compared with detection in natural images, small lesion detection in MRI images faces two major problems: First, small lesions only occupy a small fraction of voxels within an image, yielding insufficient features and information for them to be distinguished from the surrounding tissues. Second, an accurate outline of these small lesions manually is time-consuming and inefficient even for medical experts in pathology. Hence, existing methods cannot accurately detect lesions with such a limited amount of information. To solve these problems, we propose a novel multi-task convolutional neural network (CNN), which simultaneously performs regression of lesion number and detection of lesion location. Both lesion number and location can be obtained through point annotations, which is much easier and efficient than a full segmentation of lesion manually. We use an encoder-decoder structure that outputs a distance map of each pixel to the nearest lesion centers. Additionally, a regression branch is added after the encoder to learn the counting of lesion numbers, thus providing an extra regularization. Note that these two tasks share the same encoder weights. We demonstrate that our model enables the counting and locating of extremely small lesions within 3–5 voxels (300 × 300 voxels per image) with a recall of 72.66% on a large mouse brain MRI image dataset (more than 1000 images), and outperforms other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  2. Tao, Q., Ge, Z., Cai, J., Yin, J., See, S.: Improving deep lesion detection using 3D contextual and spatial attention. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 185–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_21

    Chapter  Google Scholar 

  3. Atlason, H.E., Love, A., Sigurdsson, S., Gudnason, V., Ellingsen, L.M.: SegAE: unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder. NeuroImage Clin. 24, 102085 (2019). https://doi.org/10.1016/j.nicl.2019.102085

    Article  Google Scholar 

  4. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  5. Savelli, B., Bria, A., Molinara, M., Marrocco, C., Tortorella, F.: A multi-context CNN ensemble for small lesion detection. Artif. Intell. Med. 103, 101749 (2020). https://doi.org/10.1016/j.artmed.2019.101749

    Article  Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Oktay, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas (2018). https://arxiv.org/abs/1804.03999

  8. Yoo, I., Yoo, D., Paeng, K.: PseudoEdgeNet: nuclei segmentation only with point annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 731–739. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_81

    Chapter  Google Scholar 

  9. van Wijnen, K.M.H., et al.: Automated lesion detection by regressing intensity-based distance with a neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 234–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_26

    Chapter  Google Scholar 

  10. Dubost, F., et al.: GP-Unet: lesion detection from weak labels with a 3D regression network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 214–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_25

    Chapter  Google Scholar 

  11. Dubost, F., et al.: 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI. Med. Image Anal. 51, 89–100 (2019). https://doi.org/10.1016/j.media.2018.10.008

    Article  Google Scholar 

  12. Dubost, F., et al.: Enlarged perivascular spaces in brain MRI: automated quantification in four regions. Neuroimage 185, 534–544 (2019). https://doi.org/10.1016/j.neuroimage.2018.10.026

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile. pp. 1026–1034. IEEE (2015). https://doi.org/10.1109/ICCV.2015.123

  14. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://arxiv.org/abs/1412.6980

  15. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps (2014). https://arxiv.org/abs/1312.6034

  16. Kotikalapudi, R.: Contributors: keras-vis. https://github.com/raghakot/keras-vis

Download references

Acknowledgements

This study was supported in part by Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJLab, and Shanghai Center for Brain Science and Brain-Inspired Technology, the National Natural Science Foundation of China (81873893), Science and Technology Commission of Shanghai Municipality (20ZR1407800), the 111 Project (B18015), and the Major Research plan of the National Natural Science Foundation of China (KRF201923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, X., Zhai, Y., Yu, Z., Peng, T., Zhang, XY. (2021). Detecting Extremely Small Lesions in Mouse Brain MRI with Point Annotations via Multi-task Learning. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics