Skip to main content

Gaze-Based Interaction for Interactive Storytelling in VR

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2021)

Abstract

Interactive stories in Virtual Reality need a way of making decisions that influence the further progress of the story. The decision making should be easy and should not disturb the feeling of presence in the virtual world. As many virtual reality glasses come with an integrated eye tracker, it suggests itself to use gaze for making the decisions. We created an interactive story and implemented three different gaze interaction methods, which we evaluated in a user study with 24 participants. The three interaction methods used a dwell-time mechanism, one with a gaze button, one with a texture change of the object looked at, and one method without any feedback. The texture change was the favorite of the users, however, the choice of the interaction method may also depend on the intended dramaturgy and aesthetic aspects of the story.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.goodreads.com/genres/role-playing-games.

  2. 2.

    https://unity.com.

  3. 3.

    https://www.audacity.de/.

  4. 4.

    https://fove-inc.com/product/.

  5. 5.

    http://igroup.org/pq/ipq/download.php.

  6. 6.

    https://www.ueq-online.org/.

  7. 7.

    https://jasp-stats.org/.

  8. 8.

    https://www.ueq-online.org.

References

  1. Argyriou, L., Economou, D., Bouki, V., Doumanis, I.: Engaging immersive video consumers: challenges regarding 360-degree gamified video applications. In: 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS), pp. 145–152 (2016). https://doi.org/10.1109/IUCC-CSS.2016.028

  2. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: An introduction to 3-d user interface design. Presence Teleoperators Virtual Environ. 10, 96–108 (2001). https://doi.org/10.1162/105474601750182342. http://www.mitpressjournals.org/doi/10.1162/105474601750182342

  3. Drewes, H., Khamis, M., Alt, F.: Smooth pursuit target speeds and trajectories. In: Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia, MUM 2018, pp. 139–146. ACM, New York (2018). https://doi.org/10.1145/3282894.3282913. http://doi.acm.org/10.1145/3282894.3282913

  4. Drewes, H., Schmidt, A.: Interacting with the computer using gaze gestures. In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4663, pp. 475–488. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74800-7_43http://dl.acm.org/citation.cfm?id=1778331.1778385

    Chapter  Google Scholar 

  5. Hart, S.G.: Nasa-Task Load Index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908 (2006). https://doi.org/10.1177/154193120605000909

  6. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Advances in Psychology: Human Mental Workload, vol. 52, pp. 139–183. North-Holland (1988). https://doi.org/10.1016/S0166-4115(08)62386-9. http://www.sciencedirect.com/science/article/pii/S0166411508623869

  7. Jacob, R.J.K.: What you look at is what you get: eye movement-based interaction techniques. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1990, pp. 11–18. Association for Computing Machinery, New York (1990). https://doi.org/10.1145/97243.97246. https://doi.org/10.1145/97243.97246

  8. Jacob, R.J.K.: The use of eye movements in human-computer interaction techniques: what you look at is what you get. ACM Trans. Inf. Syst. 9, 152–169 (1991). https://doi.org/10.1145/123078.128728. http://portal.acm.org/citation.cfm?doid=123078.128728

  9. Kallioniemi, P., et al.: Hotspot interaction in omnidirectional videos using head-mounted displays. In: Proceedings of the 22nd International Academic Mindtrek Conference, Mindtrek 2018, pp. 126–134. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3275116.3275148. https://doi.org/10.1145/3275116.3275148

  10. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  11. Nukarinen, T., Kangas, J., Rantala, J., Koskinen, O., Raisamo, R.: Evaluating ray casting and two gaze-based pointing techniques for object selection in virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3281505.3283382. https://doi.org/10.1145/3281505.3283382

  12. Qian, Y.Y., Teather, R.J.: The eyes don’t have it: an empirical comparison of head-based and eye-based selection in virtual reality. In: Simeone, A.L. (ed.) Proceedings of the 5th Symposium on Spatial User Interaction, Brighton, UK, pp. 91–98. ACM (2017). https://doi.org/10.1145/3131277.3132182

  13. Reyes, M.C.: Screenwriting framework for an interactive virtual reality film. In: Online proceedings of the 3rd Immersive Learning Research Network, Coimbra, Portugal (2017). https://doi.org/10.3217/978-3-85125-530-0-15

  14. Reyes, M.C.: Measuring user experience on interactive fiction in cinematic virtual reality. In: Rouse, R., Koenitz, H., Haahr, M. (eds.) ICIDS 2018. LNCS, vol. 11318, pp. 295–307. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04028-4_33

    Chapter  Google Scholar 

  15. Roth, C.: Experiencing interactive storytelling. Ph.D. thesis, Vrije Universiteit Amsterdam, January 2015. http://dare.ubvu.vu.nl/handle/1871/53840

  16. Rothe, S., Hussmann, H.: Spaceline: a concept for interaction in cinematic virtual reality. In: Cardona-Rivera, R.E., Sullivan, A., Young, R.M. (eds.) ICIDS 2019. LNCS, vol. 11869, pp. 115–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33894-7_12

    Chapter  Google Scholar 

  17. Rothe, S., Pothmann, P., Drewes, H., Hussmann, H.: Interaction techniques for cinematic virtual reality. In: Teather, R., Itoh, Y., Gabbard, J. (eds.) Proceedings, 26th IEEE Conference on Virtual Reality and 3D User Interfaces, Osaka, Japan, pp. 1733–1737. IEEE (2019). https://doi.org/10.1109/VR.2019.8798189

  18. Schreer, O., et al.: Lessons learned during one year of commercial volumetric video production. SMPTE Motion Imaging J. 129(9), 31–37 (2020). https://doi.org/10.5594/JMI.2020.3010399

    Article  Google Scholar 

  19. Tanak, N.: Interactive Cinema. MediaLAB Amsterdam (2015)

    Google Scholar 

  20. Verdugo, R., Nussbaum, M., Corro, P., Nuñnez, P., Navarrete, P.: Interactive films and coconstruction. ACM Trans. Multimedia Comput. Commun. Appl. 7, 1–24 (2011). https://doi.org/10.1145/2043612.2043617. http://dl.acm.org/citation.cfm?doid=2043612.2043617

  21. Vesterby, T., Voss, J.C., Hansen, J.P., Glenstrup, A.J., Hansen, D.W., Rudolph, M.: Gaze-guided viewing of interactive movies. Digital Creativity 16(4), 193–204 (2005). https://doi.org/10.1080/14626260500476523

    Article  Google Scholar 

  22. Vidal, M., Bulling, A., Gellersen, H.: Pursuits: spontaneous interaction with displays based on smooth pursuit eye movement and moving targets. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 439–448. ACM, New York (2013). https://doi.org/10.1145/2493432.2493477. http://doi.acm.org/10.1145/2493432.2493477

  23. Vosmeer, M., Schouten, B.: Interactive cinema: engagement and interaction. In: Mitchell, A., Fernández-Vara, C., Thue, D. (eds.) ICIDS 2014. LNCS, vol. 8832, pp. 140–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12337-0_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Drewes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drewes, H., Müller, E., Rothe, S., Hussmann, H. (2021). Gaze-Based Interaction for Interactive Storytelling in VR. In: De Paolis, L.T., Arpaia, P., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2021. Lecture Notes in Computer Science(), vol 12980. Springer, Cham. https://doi.org/10.1007/978-3-030-87595-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87595-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87594-7

  • Online ISBN: 978-3-030-87595-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics