Skip to main content

Abstract

Nowadays, companies face new challenges and benefits with the incorporation of technologies associated with Industry 4.0 into product manufacturing. The new collaborative environments have to be capable of adapting efficiently to different levels of production as well as safely collaborating in the process with human operators. In this paper, a model for predicting human actions involved in a manufacturing process is proposed. The model uses Manufacturing Description Language combined with a statistical state graph able to provide the probability of a new action to be performed by the operator. Among other benefits, the model is able to improve the production, reducing waste in movement, time, or use of additional actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mazamorahdez/Dataset-for-Visual-Control-Assistant-for-Assembly-in-Industry.

References

  1. Ragusa, F., Furnari, A., Livatino, S., Farinella, G.M.: The MECCANO dataset: Understanding human-object interactions fromTepic, Nayarit, México egocentric videos in an industrial-like domain. arXiv (2020)

    Google Scholar 

  2. Nguyen, A., Do, T.-T., Reid, I., Caldwell, D.G., Tsagarakis, N.G.: V2CNet: a Deep Learning Framework to Translate Videos to Commands for Robotic Manipulation. J. Vibration Control, page 107754631982824, mar (2019)

    Google Scholar 

  3. Mees, O., Burgard, W.: Composing pick-and-place tasks by grounding language. In: Siciliano, B., Laschi, C., Khatib, O., (eds.) Experimental Robotics, pp. 491–501. Springer, Cham (2021)

    Google Scholar 

  4. Yizhak, B.-S.: The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose. arXiv (2020)

    Google Scholar 

  5. Alati, E., Mauro, L., Ntouskos, V., Pirri, F.: Anticipating next goal for robot plan prediction. In: Bi, Y., Bhatia, R., Kapoor, S., (eds.) Intelligent Systems and Applications, pp. 792–809. Springer, Cham (2020)

    Google Scholar 

  6. Park, J., Manocha, D.: HMPO: human motion prediction in occluded environments for safe motion planning. In: Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation, July 2020

    Google Scholar 

  7. Xiangchun, Yu., Zhang, Z., Lei, W., Pang, W., Chen, H., Zhezhou, Yu., Li, B.: Deep ensemble learning for human action recognition in still images. Complexity 1–23, 2020 (2020)

    Google Scholar 

  8. Wörgötter, F., Ziaeetabar, F., Pfeiffer, S., Kaya, O., Kulvicius, T., Tamosiunaite, M.: Humans predict action using grammar-like structures. Sci. Rep. 10(1), 3999 (2020)

    Article  Google Scholar 

  9. Gesnouin, J., Pechberti, S., Bresson, G., Stanciulescu, B., Moutarde, F.: Predicting intentions of pedestrians from 2D skeletal pose sequences with a representation-focused multi-branch deep learning network. Algorithms 13(12), 331 (2020)

    Article  Google Scholar 

  10. Serpush, F., Rezaei, M.: Complex human action recognition using a hierarchical feature reduction and deep learning-based method. SN Comput. Sci. 2(2), 1–15 (2021). https://doi.org/10.1007/s42979-021-00484-0

    Article  Google Scholar 

  11. Oprea, S., et al.: A review on deep learning techniques for video prediction. IEEE Transactions on PAMI, 1 (2020)

    Google Scholar 

  12. Castrejon, L., Ballas, N., Courville, A.: Improved conditional VRNNs for video prediction. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), vol. 2019-Octob, pp. 7607–7616. IEEE, October 2019

    Google Scholar 

  13. Zamora-Hernández, M.-A., Ceciliano, J.A.C., Granados, A.V., Vargas, J.A.C., Garcia-Rodriguez, J., Azorín-López, J.: Manufacturing description language for process control in industry 4.0. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 790–799. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_76

  14. Zamora-Hernández, M.-A.: Deep learning-based visual control assistant for assembly in industry 4.0. In: Computers in Industry. Elsevier (2021)

    Google Scholar 

  15. Hopp, W.: Factory Physics. Waveland Press, Long Grove (2011)

    Google Scholar 

  16. Socconini, L.: Lean Manufacturing: paso a paso. Marge Books, Barcelona (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio-Andres Zamora-Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zamora-Hernandez, MA., Ceciliano, J.A.C., Granados, A.V., Garcia-Rodriguez, J., Azorin-Lopez, J. (2022). Predicting Human Actions in the Assembly Process for Industry 4.0. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_38

Download citation

Publish with us

Policies and ethics