Skip to main content

The Punya Platform: Building Mobile Research Apps with Linked Data and Semantic Features

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2021 (ISWC 2021)

Abstract

Modern smartphones offer advanced sensing, connectivity, and processing capabilities for data acquisition, processing, and generation: but it can be difficult and costly to develop mobile research apps that leverage these features. Nevertheless, in life sciences and other scientific domains, there often exists a need to develop advanced mobile apps that go beyond simple questionnaires: ranging from sensor data collection and processing to self-management tools for chronic patients in healthcare. We present Punya, an open source, web-based platform based on MIT App Inventor that simplifies building Linked Data-enabled, advanced mobile apps that exploit smartphone capabilities. We posit that its integration with Linked Data facilitates the development of complex application and business rules, communication with heterogeneous online services, and interaction with the Internet of Things (IoT) data sources using the smartphone hardware. To that end, Punya includes an embedded semantic rule engine, integration with GraphQL and SPARQL to access remote graph data, and support for IoT devices using Bluetooth Low Energy and Linked Data Platform Constrained Application Protocol (LDP-CoAP). Moreover, Punya supports generating Linked Data descriptions of collected data. The platform includes built-in tutorials to quickly build apps using these different technologies. In this paper, we present a short discussion of the Punya platform, its current adoption that includes over 500 active users as well as the larger app-building MIT App Inventor community of which it is a part, and future development directions that would greatly benefit Semantic Web and Linked Data application developers as well as researchers who leverage Linked Open Data resources for their research.

Resource: http://punya.mit.edu

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cordova.apache.org/.

  2. 2.

    https://reactnative.dev/.

  3. 3.

    https://web.dev/progressive-web-apps/.

  4. 4.

    https://developers.google.com/blockly.

  5. 5.

    http://iot.appinventor.mit.edu/#/bluetoothle/bluetoothleintro.

  6. 6.

    The authors mention App Inventor, but several Punya LD components were used.

  7. 7.

    http://punya.appinventor.mit.edu/?repo=RdfNotepad.

  8. 8.

    http://punya.appinventor.mit.edu/?repo=SleepApnea.

  9. 9.

    http://punya.appinventor.mit.edu/?repo=LdpCoapTutorial.

  10. 10.

    https://community.appinventor.mit.edu.

  11. 11.

    Apache Licensed, see https://github.com/mit-dig/punya.

References

  1. Adida, B., Birbeck, M., McCarron, S., Herman, I.: RDFa Core 1.1 - Third Edition). W3C Recommendation, World Wide Web Consortium, March 2015. https://www.w3.org/TR/rdfa-core/

  2. Apple Inc.: CareKit. https://developer.apple.com/carekit

  3. Apple Inc.: HealthKit. https://developer.apple.com/health-fitness/

  4. Apple Inc.: ResearchKit. http://researchkit.org/

  5. Arndt, D., Van Woensel, W.: Notation 3 (N3) Community Group (2018). https://www.w3.org/community/n3-dev/

  6. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)

    Article  Google Scholar 

  7. Blackstock, M., Lea, R.: Toward a distributed data flow platform for the web of things (distributed node-red). In: Proceedings of the 5th International Workshop on Web of Things, pp. 34–39 (2014)

    Google Scholar 

  8. Bobed, C., Yus, R., Bobillo, F., Mena, E.: Semantic reasoning on mobile devices: do androids dream of efficient reasoners? Web Semant. Sci. Services Agents World Wide Web 35, 167–183 (2015)

    Article  Google Scholar 

  9. Bormann, C., Castellani, A.P., Shelby, Z.: CoAP: an application protocol for billions of tiny internet nodes. IEEE Internet Comput. 16(2), 62–67 (2012)

    Article  Google Scholar 

  10. Bottoni, P., Ceriani, M.: Sparql playground: a block programming tool to experiment with sparql. In: VOILA@ ISWC, p. 103 (2015)

    Google Scholar 

  11. Bouton, M.E.: Why behavior change is difficult to sustain. Prev. Med. 68, 29–36 (2014)

    Article  Google Scholar 

  12. Brickley, D., Miller, L.: FOAF vocabulary specification 0.91 (2007)

    Google Scholar 

  13. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: implementing the semantic web recommendations. In: Proceedings of 13th International World Wide Web Conference Papers & Posters, pp. 74–83 (2004)

    Google Scholar 

  14. Cen, L., Patton, E.W.: Block affordances for graphql in mit app inventor. CoolThink@ JC, p. 147 (2019)

    Google Scholar 

  15. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, National Diabetes Statistics Report, Atlanta (2020)

    Google Scholar 

  16. Dominguez Veiga, J.J., Ward, T.: Data collection requirements for mobile connected health: an end user development approach. In: Proceedings of the 1st International Workshop on Mobile Development, pp. 23–30 (2016)

    Google Scholar 

  17. El-Sappagh, S., Kwak, D., Ali, F., Kwak, K.S.: DMTO: a realistic ontology for standard diabetes mellitus treatment. J. Biomed. Semant. 9(1), 1–30 (2018)

    Article  Google Scholar 

  18. Facebook Inc.: GraphQL: a data query language. https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language

  19. Hartig, O., Pérez, J.: Semantics and complexity of GraphQL. In: Proceedings of the 2018 World Wide Web Conference, pp. 1155–1164 (2018)

    Google Scholar 

  20. Hasan, K., Biswas, K., Ahmed, K., Nafi, N.S., Islam, M.S.: A comprehensive review of wireless body area network. J. Netw. Comput. Appl. 143, 178–198 (2019)

    Article  Google Scholar 

  21. Haussmann, S., et al.: FoodKG: a semantics-driven knowledge graph for food recommendation. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 146–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_10

    Chapter  Google Scholar 

  22. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21(79), 1–31 (2004)

    Google Scholar 

  23. InVision Inc.: InVision. https://www.invisionapp.com

  24. Kazakov, Y., Klinov, P.: Experimenting with ELK reasoner on android. In: Proceedings of 2nd International Workshop on OWL Reasoner Evaluation, pp. 68–74 (2013)

    Google Scholar 

  25. Kim, H., Mentzer, J., Taira, R.: Developing a physical activity ontology to support the interoperability of physical activity data. J. Med. Internet Res. 21(4), e12776 (2019)

    Google Scholar 

  26. Kinkead, L., Pinheiro, P., McGuinness, D.L.: Automating the collection of semantic sensor network metadata in the field with mobile applications. In: Proceedings of 1st International Workshop on Mobile Deployment of Semantic Technologies, pp. 32–43 (2015)

    Google Scholar 

  27. Laratta, C.R., Ayas, N.T., Povitz, M., Pendharkar, S.R.: Diagnosis and treatment of obstructive sleep apnea in adults. CMAJ 189(48), E1481–E1488 (2017)

    Article  Google Scholar 

  28. Li, W., Seneviratne, O., Patton, E.W., Kagal, L.: A semantic platform for developing data-intensive mobile apps. In: Proceedings of 13th International Conference on Semantic Computing (ICSC), pp. 71–78. IEEE (2019)

    Google Scholar 

  29. Li, W.J.: Helping the helpers: a toolkit for mobile humanitarian assistance apps. Master’s thesis, Massachusetts Institute of Technology (2016)

    Google Scholar 

  30. Loseto, G., Ieva, S., Gramegna, F., Ruta, M., Scioscia, F., Di Sciascio, E.: Linked data (in low-resource) platforms: a mapping for constrained application protocol. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 131–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_14

    Chapter  Google Scholar 

  31. Marvel Inc.: Marvel. https://marvelapp.com

  32. Mayo Clinic: Polysomnography (sleep study). https://www.mayoclinic.org/tests-procedures/polysomnography/about/pac-20394877

  33. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview. W3C Recommendation 10(2) (2004)

    Google Scholar 

  34. Miralles, I., et al.: Smartphone apps for the treatment of mental disorders: systematic review. JMIR Mhealth Uhealth 8(4), e14897 (2020)

    Google Scholar 

  35. MockPlus Inc.: MockPlus. https://www.mockplus.com

  36. Nilsson, M.Y., Andersson, S., Magnusson, L., Hanson, E.: Ambient assisted living technology-mediated interventions for older people and their informal carers in the context of healthy ageing: a scoping review. Health Sci. Rep. 4(1), e225 (2021)

    Google Scholar 

  37. Node-RED community: Node-RED: Low-code programming for event-driven applications. https://nodered.org

  38. Patton, E.W.: Energy aware reasoning agents for the mobile semantic web. Ph.D. thesis, RPI (2016)

    Google Scholar 

  39. Patton, E.W.: A look at component usage in MIT App Inventor (2020). http://appinventor.mit.edu/blogs/evan/2020/12/20/component-usage-mit-app-inventor. Accessed 01 Apr 2021

  40. Patton, E.W., McGuinness, D.L.: A power consumption benchmark for reasoners on mobile devices. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 409–424. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_26

    Chapter  Google Scholar 

  41. Patton, E.W., Scioscia, F., Van Woensel, W.: Building mobile semantic web apps with Punya. In: Proceedings of ISWC 2020 Tutorials (2020)

    Google Scholar 

  42. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 34(3), 1–45 (2009)

    Article  Google Scholar 

  43. Praino, E., et al.: SScEntry: a personal disease diary app for Systemic Sclerosis patients. Ann. Rheum. Dis. 79, 558–559 (2020). eULAR 2020 European eCongress of Rheumatology

    Google Scholar 

  44. Proto.io Inc.: Proto.io: Prototyping for all. https://proto.io

  45. Qualtrics Inc.: Qualtrics: XM OS - Experience Design and Improvement. https://www.qualtrics.com

  46. Ruta, M., Scioscia, F., Di Sciascio, E.: Enabling the semantic web of things: framework and architecture. In: 2012 IEEE Sixth International Conference on Semantic Computing, pp. 345–347. IEEE (2012)

    Google Scholar 

  47. Sambra, A., et al.: Solid: a platform for decentralized social applications based on linked data. Technical report, MIT CSAIL & Qatar Computing Research Institute (2016)

    Google Scholar 

  48. Shelby, Z.: Constrained RESTful Environments (CoRE) Link Format. RFC 6690, Internet Engineering Task Force, August 2012

    Google Scholar 

  49. Shiffman, S., Stone, A.A., Hufford, M.R.: Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008)

    Article  Google Scholar 

  50. Shih, F.: Exploring mobile privacy in context. Ph.D. thesis, MIT (2015)

    Google Scholar 

  51. Sittón-Candanedo, I., Alonso, R.S., Corchado, J.M., Rodríguez-González, S., Casado-Vara, R.: A review of edge computing reference architectures and a new global edge proposal. Futur. Gener. Comput. Syst. 99, 278–294 (2019)

    Article  Google Scholar 

  52. Steve Speicher and John Arwe and Ashok Malhotra: Linked Data Platform 1.0. https://www.w3.org/TR/ldp

  53. United Nations Department of Economic and Social Affairs: World Population Prospects 2019. https://population.un.org/wpp/

  54. Van Woensel, W., Abidi, S.: Benchmarking semantic reasoning on mobile platforms: towards optimization using OWL2 RL. Semantic Web 10(4), 637–663 (2019)

    Article  Google Scholar 

  55. Van Woensel, W., Roy, P., Abidi, S., Abidi, S.: A mobile and intelligent patient diary for chronic disease self-management. In: Studies in Health Technology and Informatics, vol. 216 (2015)

    Google Scholar 

  56. Wilkinson, M., Vandervalk, B., McCarthy, L.: The semantic automated discovery and integration (SADI) web service design-pattern, API and reference implementation. Nat. Preced. 1 (2011)

    Google Scholar 

  57. Wolber, D., Abelson, H., Friedman, M.: Democratizing computing with app inventor. GetMobile: Mob. Comput. Commun. 18(4), 53–58 (2015)

    Google Scholar 

  58. Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes semantic: DL reasoners on smartphones. In: Proceedings of 2nd International Workshop on OWL Reasoner Evaluation, pp. 46–52 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan W. Patton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patton, E.W., Van Woensel, W., Seneviratne, O., Loseto, G., Scioscia, F., Kagal, L. (2021). The Punya Platform: Building Mobile Research Apps with Linked Data and Semantic Features. In: Hotho, A., et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88361-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88360-7

  • Online ISBN: 978-3-030-88361-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics