Skip to main content

Mechanism Studies on Biofuel Conversion Under Methane Environment

  • Chapter
  • First Online:
Methane Activation and Utilization in the Petrochemical and Biofuel Industries
  • 351 Accesses

Abstract

In this chapter, the mechanisms of reactions during methane-assisted biofuel conversion process will be presented. First, the main constituents of biofuel resources will be mainly classified into several groups, including carboxylic acids, alcohols/phenols, esters, aldehydes, and ketones, despite the varied composition. It can be seen that one of the most important characteristics of biofuel molecules is the presence of oxygen atoms, whose evolution deserves extra attention in the mechanism study. Then, the reaction processes of specific model compounds including alcohols, carbonyls, phenolics/lignin, cellulose, and furans will be discussed as case studies. During the discussion, the reaction pathway will be given, followed by investigations regarding the function of methane and the property-performance relationship of the charged catalysts. Finally, the most important characteristics of biofuel conversion under methane environment, the specific challenges for real applications, and possible solutions will be summarized. It should be noted that although no mature industry practice of methane-assisted biofuel conversion is currently reported, this economically and environmentally friendly process is expected to attract more and more attention for sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)

    Article  Google Scholar 

  2. J.D. Adjaye, N.N. Bakhsh, Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways. Biomass Bioenergy 8(3), 131–149 (1995)

    Article  Google Scholar 

  3. C.D. Chang, A.J. Silvestri, The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. J. Catal. 47, 249–259 (1977)

    Article  Google Scholar 

  4. C.D. Chang, C.T.-W. Chu, R.F. Socha, Methanol conversion to olefins over ZSM-5 I. effect of temperature and zeolite Si02/A1203. J. Catal. 86, 289–296 (1984)

    Article  Google Scholar 

  5. M. Bjorgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, et al., Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal. 249(2), 195–207 (2007)

    Article  Google Scholar 

  6. M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Appl. Catal. A Gen. 345(1), 43–50 (2008)

    Article  Google Scholar 

  7. C.K. Narula, Z. Li, E.M. Casbeer, R.A. Geiger, M. Moses-Debusk, M. Keller, et al., Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci. Rep. 5, 16039 (2015)

    Article  Google Scholar 

  8. A. Wang, P. He, M. Yung, H. Zeng, H. Qian, H. Song, Catalytic co-aromatization of ethanol and methane. Appl. Catal. B Environ. 198, 480–492 (2016)

    Article  Google Scholar 

  9. D. Austin, A. Wang, P. He, H. Qian, H. Zeng, H. Song, Catalytic valorization of biomass derived glycerol under methane: Effect of catalyst synthesis method. Fuel 216, 218–226 (2018)

    Article  Google Scholar 

  10. S. Tan, Z. Zhang, J. Sun, Q. Wang, Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chin. J. Catal. 34(4), 641–650 (2013)

    Article  Google Scholar 

  11. L. Chen, Y. Zhu, H. Zheng, C. Zhang, Y. Li, Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Appl. Catal. A: Gen. 411–412, 95–104 (2012)

    Article  Google Scholar 

  12. L. Chen, Y. Zhu, H. Zheng, C. Zhang, B. Zhang, Y. Li, Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. J. Mol. Catal. A Chem. 351, 217–227 (2011)

    Article  Google Scholar 

  13. A.C. Basagiannis, X.E. Verykios, Catalytic steam reforming of acetic acid for hydrogen production. Int. J. Hydrog. Energy 32(15), 3343–3355 (2007)

    Article  Google Scholar 

  14. P. He, W. Shan, Y. Xiao, H. Song, Performance of Zn/ZSM-5 for in situ catalytic upgrading of pyrolysis bio-oil by methane. Top. Catal. 59(1), 86–93 (2015)

    Article  Google Scholar 

  15. A. Wang, D. Austin, A. Karmakar, G.M. Bernard, V.K. Michaelis, M.M. Yung, et al., Methane upgrading of acetic acid as a model compound for a biomass-derived liquid over a modified zeolite catalyst. ACS Catal. 7(5), 3681–3692 (2017)

    Article  Google Scholar 

  16. S. Wang, Z. Guo, Q. Cai, L. Guo, Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45, 138–143 (2012)

    Article  Google Scholar 

  17. D. Austin, A. Wang, J.H. Harrhy, X. Mao, H. Zeng, H. Song, Catalytic aromatization of acetone as a model compound for biomass-derived oil under a methane environment. Cat. Sci. Technol. 8(19), 5104–5114 (2018)

    Article  Google Scholar 

  18. A.J. Cruz-Cabeza, D. Esquivel, C. Jimenez-Sanchidrian, F.J. Romero-Salguero, Metal-exchanged beta zeolites as catalysts for the conversion of acetone to hydrocarbons. Materials (Basel) 5(1), 121–134 (2012)

    Article  Google Scholar 

  19. N. Viswanadham, S.K. Saxena, Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction. Fuel 105, 490–495 (2013)

    Article  Google Scholar 

  20. K.V. Ramanamurty, G.S. Salvapati, Catalytic cyclocondensation of acetone to isophorone. Indian J. Chem. 38B(1), 24–28 (1999)

    Google Scholar 

  21. P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, A.D. Jensen, Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catal. 3(8), 1774–1785 (2013)

    Article  Google Scholar 

  22. Y. Hong, H. Zhang, J. Sun, K.M. Ayman, A.J.R. Hensley, M. Gu, et al., Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol. ACS Catal. 4(10), 3335–3345 (2014)

    Article  Google Scholar 

  23. D. Gao, Y. Xiao, A. Varma, Guaiacol hydrodeoxygenation over platinum catalyst: Reaction pathways and kinetics. Ind. Eng. Chem. Res. 54(43), 10638–10644 (2015)

    Article  Google Scholar 

  24. J.E. Peters, J.R. Carpenter, D.C. Dayton, Anisole and guaiacol hydrodeoxygenation reaction pathways over selected catalysts. Energy Fuel 29(2), 909–916 (2015)

    Article  Google Scholar 

  25. Q. Tan, G. Wang, L. Nie, A. Dinse, C. Buda, J. Shabaker, et al., Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts. ACS Catal. 5(11), 6271–6283 (2015)

    Article  Google Scholar 

  26. G.H. Gu, C.A. Mullen, A.A. Boateng, D.G. Vlachos, Mechanism of dehydration of phenols on noble metals via first-principles microkinetic modeling. ACS Catal. 6(5), 3047–3055 (2016)

    Article  Google Scholar 

  27. A. Robinson, G.A. Ferguson, J.R. Gallagher, S. Cheah, G.T. Beckham, J.A. Schaidle, et al., Enhanced hydrodeoxygenation ofm-cresol over bimetallic Pt–Mo catalysts through an oxophilic metal-induced tautomerization pathway. ACS Catal. 6(7), 4356–4368 (2016)

    Article  Google Scholar 

  28. G. Liu, A.W. Robertson, M.M. Li, W.C.H. Kuo, M.T. Darby, M.H. Muhieddine, et al., MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9(8), 810–816 (2017)

    Article  Google Scholar 

  29. Y. Xiao, A. Varma, Kinetics of guaiacol deoxygenation using methane over the Pt–Bi catalyst. React. Chem. Eng. 2(1), 36–43 (2017)

    Article  Google Scholar 

  30. M.J. Gilkey, B. Xu, Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 6(3), 1420–1436 (2016)

    Article  Google Scholar 

  31. T.V. Choudhary, C.B. Phillips, Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A Gen. 397(1–2), 1–12 (2011)

    Article  Google Scholar 

  32. H. Shafaghat, P. Sirous Rezaei, W.M.A.W. Daud, Catalytic hydrogenation of phenol, cresol and guaiacol over physically mixed catalysts of Pd/C and zeolite solid acids. RSC Adv. 5(43), 33990–33998 (2015)

    Article  Google Scholar 

  33. A.L. Jongerius, R. Jastrzebski, P.C.A. Bruijnincx, B.M. Weckhuysen, CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. J. Catal. 285(1), 315–323 (2012)

    Article  Google Scholar 

  34. Z. Si, X. Zhang, C. Wang, L. Ma, R. Dong, An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 7(6) (2017)

    Google Scholar 

  35. T. Prasomsri, To AT, S. Crossley, W.E. Alvarez, D.E. Resasco, Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of different hydrocarbon mixtures. Appl. Catal. B: Environ. 106(1–2), 204–211 (2011)

    Google Scholar 

  36. L.O. Alemán-Vázquez, J.L.C. Domínguez, J.L. García-Gutiérrez, Effect of Tetralin, Decalin and naphthalene as hydrogen donors in the upgrading of heavy oils. Procedia Eng. 42, 532–539 (2012)

    Article  Google Scholar 

  37. Y. Xiao, A. Varma, Catalytic deoxygenation of Guaiacol using methane. ACS Sustain. Chem. Eng. 3(11), 2606–2610 (2015)

    Article  Google Scholar 

  38. A. Wang, H. Song, Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation. Bioresour. Technol. 268, 505–513 (2018)

    Article  Google Scholar 

  39. P.T.M. Do, A.J. Foster, J. Chen, R.F. Lobo, Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chem., 14(5) (2012)

    Google Scholar 

  40. A. Popov, E. Kondratieva, L. Mariey, J.M. Goupil, J. El Fallah, J.-P. Gilson, et al., Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts. J. Catal. 297, 176–186 (2013)

    Article  Google Scholar 

  41. M.S. Zanuttini, C.D. Lago, C.A. Querini, M.A. Peralta, Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts. Catal. Today 213, 9–17 (2013)

    Article  Google Scholar 

  42. P.M. de Souza, L. Nie, L.E.P. Borges, F.B. Noronha, D.E. Resasco, Role of oxophilic supports in the selective hydrodeoxygenation of m-cresol on Pd catalysts. Catal. Lett. 144(12), 2005–2011 (2014)

    Article  Google Scholar 

  43. A.J.R. Hensley, Y. Wang, J.-S. McEwen, Phenol deoxygenation mechanisms on Fe(110) and Pd(111). ACS Catal. 5(2), 523–536 (2014)

    Article  Google Scholar 

  44. L. Nie, P.M. de Souza, F.B. Noronha, W. An, T. Sooknoi, D.E. Resasco, Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J. Mol. Catal. A: Chem. 388–389, 47–55 (2014)

    Article  Google Scholar 

  45. L. Nie, D.E. Resasco, Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst. J. Catal. 317, 22–29 (2014)

    Article  Google Scholar 

  46. M.S. Zanuttini, B.O. Dalla Costa, C.A. Querini, M.A. Peralta, Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Appl. Catal. A Gen. 482, 352–361 (2014)

    Article  Google Scholar 

  47. G. Liu, Y. Zhao, J. Guo, High selectively catalytic conversion of lignin-based phenols into para−/m-xylene over Pt/HZSM-5. Catalysts, 6(2) (2016)

    Google Scholar 

  48. P.M. de Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, D.E. Resasco, et al., Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation. ACS Catal. 7(3), 2058–2073 (2017)

    Article  Google Scholar 

  49. H.-Y.T. Chen, G. Pacchioni, Role of oxide reducibility in the deoxygenation of phenol on ruthenium clusters supported on the anatase titania (1 0 1) surface. ChemCatChem 8(15), 2492–2499 (2016)

    Article  Google Scholar 

  50. A. Wang, D. Austin, P. He, M. Ha, V.K. Michaelis, L. Liu, et al., Mechanistic investigation on catalytic deoxygenation of phenol as a model compound of biocrude under methane. ACS Sustain. Chem. Eng. 7(1), 1512–1523 (2018)

    Article  Google Scholar 

  51. S. Xiao, B. Liu, Y. Wang, Z. Fang, Z. Zhang, Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures. Bioresour. Technol. 151, 361–366 (2014)

    Article  Google Scholar 

  52. P. Wattanapaphawong, O. Sato, K. Sato, N. Mimura, P. Reubroycharoen, A. Yamaguchi, Conversion of cellulose to lactic acid by using ZrO2–Al2O3 catalysts. Catalysts, 7(7) (2017)

    Google Scholar 

  53. S. Dutta, S. De, M.I. Alam, M.M. Abu-Omar, B. Saha, Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal. 288, 8–15 (2012)

    Article  Google Scholar 

  54. J. Akhtar, N.A.S. Amin, A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energ. Rev. 15(3), 1615–1624 (2011)

    Article  Google Scholar 

  55. J. Zhang, X. Liu, M. Sun, X. Ma, Y. Han, Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal. 2(8), 1698–1702 (2012)

    Article  Google Scholar 

  56. M. Mascal, E.B. Nikitin, Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. 47(41), 7924–7926 (2008)

    Article  Google Scholar 

  57. A. Onda, T. Ochi, K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10(10) (2008)

    Google Scholar 

  58. J.C. Serrano-Ruiz, D.J. Braden, R.M. West, J.A. Dumesic, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Appl. Catal. B Environ. 100(1–2), 184–189 (2010)

    Article  Google Scholar 

  59. Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, et al., Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem., 12(4) (2010)

    Google Scholar 

  60. K. Chen, M. Tamura, Z. Yuan, Y. Nakagawa, K. Tomishige, One-pot conversion of sugar and sugar polyols to n-alkanes without C-C dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5. ChemSusChem 6(4), 613–621 (2013)

    Article  Google Scholar 

  61. L. Zhou, R. Liang, Z. Ma, T. Wu, Y. Wu, Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour. Technol. 129, 450–455 (2013)

    Article  Google Scholar 

  62. Y. Wang, H. Song, L. Peng, Q. Zhang, S. Yao, Recent developments in the catalytic conversion of cellulose. Biotechnol. Biotechnol. Equip. 28(6), 981–988 (2014)

    Article  Google Scholar 

  63. G. Zhang, C. Ni, X. Huang, A. Welgamage, L.A. Lawton, P.K. Robertson, et al., Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis. Chem. Commun. (Camb.) 52(8), 1673–1676 (2016)

    Article  Google Scholar 

  64. D.A. Gunawardena, S.D. Fernando, Thermal conversion of glucose to aromatic hydrocarbons via pressurized secondary pyrolysis. Bioresour. Technol. 102(21), 10089–10093 (2011)

    Article  Google Scholar 

  65. E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner, J.A. Dumesic, Catalytic conversion of biomass to Monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008)

    Article  Google Scholar 

  66. D.A. Gunawardena, S.D. Fernando, Catalytic conversion of glucose micropyrolysis vapors in methane-using isotope labeling to reveal reaction pathways. Energ. Technol. 5(5), 708–714 (2017)

    Article  Google Scholar 

  67. T.R. Carlson, J. Jae, G.W. Huber, Mechanistic insights from isotopic studies of glucose conversion to aromatics over ZSM-5. ChemCatChem 1(1), 107–110 (2009)

    Article  Google Scholar 

  68. T.R. Carlson, J. Jae, Y.-C. Lin, G.A. Tompsett, G.W. Huber, Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. J. Catal. 270(1), 110–124 (2010)

    Article  Google Scholar 

  69. A. Zheng, Z. Zhao, S. Chang, Z. Huang, K. Zhao, H. Wu, et al., Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production. Green Chem., 16(5) (2014)

    Google Scholar 

  70. Y.-T. Cheng, G.W. Huber, Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction. ACS Catal. 1(6), 611–628 (2011)

    Article  Google Scholar 

  71. X. Li, H. Zhang, J. Li, L. Su, J. Zuo, S. Komarneni, et al., Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Appl. Catal. A Gen. 455, 114–121 (2013)

    Article  Google Scholar 

  72. G. Zhou, J. Li, Y. Yu, X. Li, Y. Wang, W. Wang, et al., Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene. Appl. Catal. A Gen. 487, 45–53 (2014)

    Article  Google Scholar 

  73. J. Li, Y. Yu, X. Li, W. Wang, G. Yu, S. Deng, et al., Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites. Appl. Catal. B: Environ 172–173, –154–64 (2015)

    Google Scholar 

  74. Y. Yang, Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao, et al., Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chem., 15(7) (2013)

    Google Scholar 

  75. W. Xu, H. Wang, X. Liu, J. Ren, Y. Wang, G. Lu, Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chem. Commun. (Camb.) 47(13), 3924–3926 (2011)

    Article  Google Scholar 

  76. S. Sitthisa, W. An, D.E. Resasco, Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal. 284(1), 90–101 (2011)

    Article  Google Scholar 

  77. Y.-T. Cheng, G.W. Huber, Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chem. 14(11) (2012)

    Google Scholar 

  78. C.L. Williams, C.-C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D.G. Vlachos, et al., Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal. 2(6), 935–939 (2012)

    Article  Google Scholar 

  79. A. Wang, D. Austin, H. Qian, H. Zeng, H. Song, Catalytic valorization of furfural under methane environment. ACS Sustain. Chem. Eng. 6(7), 8891–8903 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, H., Jarvis, J., Meng, S., Xu, H., Li, Z., Li, W. (2022). Mechanism Studies on Biofuel Conversion Under Methane Environment. In: Methane Activation and Utilization in the Petrochemical and Biofuel Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-88424-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88424-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88423-9

  • Online ISBN: 978-3-030-88424-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics