Skip to main content

The Role of Glycoalkaloids, Lipids, and Proteins in Tissue Inflammation

  • Chapter
  • First Online:
Natural Inflammatory Molecules in Fruits and Vegetables

Abstract

This chapter discusses the importance of food glycoalkaloids, the naturally produced nitrogen-containing compounds occurring as steroidal glycosides, as secondary metabolites produced in various parts of Solanaceae vegetables. Despite possessing appreciable amounts of vitamins and minerals, and being known for several health benefits, nightshade vegetables can create problems for people who are allergic to the alkaloids. The adverse health effects due to consumption of nightshade vegetables have been in limelight since 1979 when an epidemic of potato poisoning in London was reported. However, Ayurvedic physicians in India had been advising every patient to avoid nightshade vegetables consumption for centuries with an understanding that potatoes, tomatoes, eggplants, and peppers can generate excess heat and acidity in the body, aggravating both vata and pitta doshas leading to gout, nowadays called rheumatoid arthritis, high-level inflammation, and autoimmune diseases. In this chapter, an attempt is made to present a scenario of nutritional and detrimental effects of different nightshade vegetables, along with a mention of scientific opinion on the risk assessment of glycoalkaloids in feed and food. Finally, the Chapter concludes by highlighting the logic of dietary prohibitions suggested by Ayurvedic physicians to patients, and some introduction to the importance of proteins and lipids in tissue inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EC:

European Commission

EFSA:

European Food Safety Authority

GA:

Glycoalkaloid

IBD:

Inflammatory bowel disease

TPGA:

Total potato glycoalkaloid

References

  1. Chen C, Lin L (2020) Alkaloids in diet. In: Xiao J, Sarker S, Asakawa Y (eds) Handbook of dietary phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_36-1

  2. Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain functions. Adv Nutr 2(1):32–50. https://doi.org/10.3945/an.110.000117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Purdie J (2020) Nightshade vegetables list. Types of nightshade vegetable. Very Well Fit, Dotdash, Inc., New York. https://www.verywellfit.com/the-health-benefits-of-nightshade-vegetables-4687184. Accessed 02 Aug 2021

  4. Lillis C (2018). What to know about nightshade allergies. Medical News Today, Healthline Media UK Ltd., Cheltenham. https://www.medicalnewstoday.com/articles/321883. Accessed 02 Aug 2021

  5. McMillan M, Thomson JC (1979) An outbreak of suspected solanine poisoning in schoolboys: examinations of criteria of solanine poisoning. QJM Int J Med 48(2):227–243. https://doi.org/10.1093/oxfordjournals.qjmed.a067573

    Article  CAS  Google Scholar 

  6. Gunthor KL (2021) Nightshades and Ayurveda. Why are nightshades avoided in Ayurveda? Lakshmi Ayurveda. www.lakhmiayurveda.com.qu. https://www.lakshmiayurveda.com.au/2021/03/nightshades-and-ayurveda/. Accessed 02 Aug 2021

  7. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, Hoogenboom LR, Leblanc J-C, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Brimer L, Cottrill B, Dusemund B, Mulder P, Vollmer G, Binaglia M, Ramos Bordajandi L, Riolo F, Roldan-Torres R, Grasl-Kraupp B (2020) Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA J 18(8):e06222. https://doi.org/10.2903/j.efsa2020.6222

    Article  PubMed Central  Google Scholar 

  8. Devi G (2020) Guide on nightshade vegetables and fruits in your diet—best replacement foods. The Fit Indian. www.thefitindian.com. https://www.thefitindian.com/blog/nightshade-food-risks/. Accessed 02 Aug 2021

  9. Singh N, Bhalla M, de Jager P, Gilea M (2011) An overview on Ashwagandha: a rasayan (rejuvenator) of Ayurveda. Afr J Trad Compl Altern Med 8(5):S208–S213. https://doi.org/10.4314/ajtcam.v8i5S.9

    Article  Google Scholar 

  10. Anonymous (2021) Goji Berries: the Ayurvedic ingredient that can boost your skincare routine. AVYA Advanced Ayurvedic Skincare (AVYA). www.avyaskincare.com. https://www.avyaskincare.com/blogs/blog/goji-berries-the-ayurvedic-ingredient-that-can-boost-your-skincare-routine. Accessed 02 Aug 2021

  11. Maharishi Ayurveda Staff (2021) Sweet Paprika. Maharishi AyurVeda Products International, Inc., Fairfield. www.mapi.com. https://mapi.com/blogs/articles/sweet-paprika. Accessed 02 Aug 2021

  12. Ede G (2021) How deadly are nightshades? Diagnosis: DIET. www.diagnosisdiet.com. https://www.diagnosisdiet.com/full-article/nightshades. Accessed 02 Aug 2021

  13. Siddique MAB, Brunton N (2019) Food Glycoalkaloids: distribution, structure, cytotoxicity, extraction, and biological activity. In: Kurek J (ed) Alkaloids—their importance in nature and human life. IntechOpen, London. https://doi.org/10.5772/intechopen.82780

  14. Nepal B, Stine KJ (2019) Glycoalkaloids: structure, properties, and interaction with model membrane system. Processes 7(8):513. https://doi.org/10.3390/pr7080513

    Article  CAS  Google Scholar 

  15. Mensinga TT, Sips AJAM, Rompelberg CJM, van Twillert K, Meulenbelt J, van den Top HJ, van Egmond HP (2005) Potato glycoalkaloids and adverse effects in humans: an ascending dose study (clinical trial). Reg Toxicol Pharmacol 41(1):66–72. https://doi.org/10.1016/j.yrtph.2004.09.004

    Article  CAS  Google Scholar 

  16. McGehee DS, Krasowski MD, Fung DL, Wilson B, Gronert GA, Moss J (2000) Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology 93:510–519. https://doi.org/10.1097/00000542-200008000-00031

    Article  CAS  PubMed  Google Scholar 

  17. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335. https://doi.org/10.2174/157159X1311030006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174. https://doi.org/10.1016/S0308-8146(99)00247-2

    Article  CAS  Google Scholar 

  19. Yu JQ, Lei JC, Zhang XQ, Yu HD, Tian DZ, Liao ZX, Zou GL (2011) Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turcz. var. hirtus Regel. Food Chem 126(4):1593–1598. https://doi.org/10.1016/j.foodchem.2010.12.027

  20. Lee YJ, Kang DG, Kim JS, Lee HS (2008) Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vasc Pharmacol 48(1):38–46. https://doi.org/10.1016/j.vph.2007.11.004

    Article  CAS  Google Scholar 

  21. Lu YH, Huang JH, Li YC, Ma TT, Sang P, Wang WJ, Gao CY (2015) Variation in nutritional compositions, antioxidant activity and microstructure of Lycopus lucidus Turcz. root at different harvest times. Food Chem 183:91–100. https://doi.org/10.1016/j.foodchem.2015.03.033

    Article  CAS  PubMed  Google Scholar 

  22. Yang X, Lv Y, Tian L, Zhao Y (2010) Composition and systemic immune activity of the polysaccharides from an herbal tea (Lycopus lucidus Turcz). J Agric Food Chem 58(10):6075–6080. https://doi.org/10.1021/jf101061y

    Article  CAS  PubMed  Google Scholar 

  23. Freitas RM (2009) The evaluation of effects of lipoic acid on the lipid peroxidation, nitrite formation and antioxidant enzymes in the hippocampus of rats after pilocarpine-induced seizures. Neurosci Lett 455(2):140–144. https://doi.org/10.1016/j.neulet.2009.03.065

    Article  CAS  PubMed  Google Scholar 

  24. Militão GCG, Ferreira PMP, de Freitas RM (2010) Effects of lipoic acid on oxidative stress in rat striatum after pilocarpine-induced seizures. Neurochem Int 56(1):16–20. https://doi.org/10.1016/j.neuint.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  25. Xavier SM, Barbosa CO, Barros DO, Silva RF, Oliveira AA, Freitas RM (2007) Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine. Neurosci Lett 420(1):76–79. https://doi.org/10.1016/j.neulet.2007.04.056

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira PMP, Militão GCG, Freitas RM (2009) Lipoic acid effects on lipid peroxidation level, superoxide dismutase activity and monoamines concentration in rat hippocampus. Neurosci Lett 464(2):131–134. https://doi.org/10.1016/j.neulet.2009.08.051

    Article  CAS  PubMed  Google Scholar 

  27. dos Santos Sales ÍM, Do Nascimento KG, Feitosa CM, Saldanha GB, Feng D, de Freitas RM (2011) Caffeic acid effects on oxidative stress in rat hippocampus after pilocarpine-induced seizures. Neurol Sci 32(3):375–380. https://doi.org/10.1007/s10072-010-0420-4

    Article  PubMed  Google Scholar 

  28. Tome AR, Feng D, Freitas RM (2010) The effects of alpha-tocopherol on hippocampal oxidative stress prior to in pilocarpine-induced seizures. Neurochem Res 35(4):580–587. https://doi.org/10.1007/s11064-009-0102-x

    Article  CAS  PubMed  Google Scholar 

  29. Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelt P, McPhail D, Skibsted LH, Tijburg L (2001) Investigation of plant extracts for the protection of processed food against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur Food Res Technol 212:319–328. https://doi.org/10.1007/s002170000256

    Article  CAS  Google Scholar 

  30. Lebeau J, Furman C, Bernier JL, Duriez P, Teissier E, Cotelle N (2000) Antioxidant properties of di-tert-butylhydroxylated flavonoids. Free Rad Biol Med 29(9):900–912. https://doi.org/10.1016/S0891-5849(00)00390-7

    Article  CAS  PubMed  Google Scholar 

  31. Gardner PT, McPhail DB, Duthie GG (1998) Electron spin resonance spectroscopic assessment of the antioxidant potential of teas in aqueous and organic media. J Sci Food Agric 76(2):257–262. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3C257::AID-JSFA944%3E3.0.CO;2-B

    Article  CAS  Google Scholar 

  32. Møller JK, Madsen HL, Aaltonen T, Skibsted LH (1999) Dittany (Origanum dictamnus) as a source of water-extractable antioxidants. Food Chem 64(2):215–219. https://doi.org/10.1016/S0308-8146(98)00143-5

    Article  Google Scholar 

  33. Ramadan MF, Kroh LW, Mörsel JT (2003) Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51(24):6961–6969. https://doi.org/10.1021/jf0346713

  34. Agwaramgbo L, Okegbe T, Wright T, Igwe S, Ogburie V (2013) Inhibition of the oxidation of acetophenone by aqueous extracts of edible fruits and vegetables. Mod Chem Appl 1(3):1000105. https://doi.org/10.4172/2329-6798.1000105

    Article  CAS  Google Scholar 

  35. Haddad MA, Omar SS, Parisi S (2021) Vegan cheeses vs processed cheeses—traceability issues and monitoring countermeasures. Br Food J 123(6):2003–2015. https://doi.org/10.1108/BFJ-10-2020-0934

    Article  Google Scholar 

  36. Bou R, Navas JA, Tres A, Codony R, Guardiola F (2012) Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control 27(1):254–267. https://doi.org/10.1016/j.foodcont.2012.03.026

    Article  CAS  Google Scholar 

  37. Rutkowska J, Antoniewska A, Martinez-Pineda M, Nawirska-Olszańska A, Zbikowska A, Baranowski D (2020) Black chokeberry fruit polyphenols: a valuable addition to reduce lipid oxidation of muffins containing xylitol. Antioxidants 9(5):394. https://doi.org/10.3390/antiox9050394

    Article  CAS  PubMed Central  Google Scholar 

  38. Kong J, Perkins LB, Dougherty MP, Camire ME (2011) Control of lipid oxidation in extruded salmon jerky snacks. J Food Sci 76(1):C8–C13. https://doi.org/10.1111/j.1750-3841.2010.01896.x

    Article  CAS  PubMed  Google Scholar 

  39. Bekele EK, Nosworthy MG, Henry CJ, Shand PJ, Tyler RT (2020) Oxidative stability of direct-expanded chickpea–sorghum snacks. Food Sci Nutr 8(8):4340–4351. https://doi.org/10.1002/fsn3.1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albertos I, Martin-Diana AB, Jaime I, Diez AM, Rico D (2016) Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation. Innov Food Sci Emerg Technol 36:336–342. https://doi.org/10.1016/j.ifset.2016.07.006

    Article  CAS  Google Scholar 

  41. EFSA Panel on Dietetic Products Nutrition and Allergies (2011) Scientific opinion on the substantiation of health claims related to soy isoflavones and protection of DNA, proteins and lipids from oxidative damage (ID 1286, 4245), maintenance of normal blood LDL cholesterol concentrations (ID 1135, 1704a, 3093a), reduction of vasomotor symptoms associated with menopause (ID 1654, 1704b, 2140, 3093b, 3154, 3590), maintenance of normal skin tonicity (ID 1704a), contribution to normal hair growth (ID 1704a, 4254), “cardiovascular health” (ID 3587), treatment of prostate cancer (ID 3588) and “upper respiratory tract” (ID 3589) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(7):2264–2308. https://doi.org/10.2903/j.efsa.2011.2264

    Article  CAS  Google Scholar 

  42. Couet C, Delarue J, Ritz P, Antoine JM, Lamisse F (1997) Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes 21(8):637–643. https://doi.org/10.1038/sj.ijo.0800451

    Article  CAS  Google Scholar 

  43. Difonzo G, Pasqualone A, Silletti R, Cosmai L, Summo C, Paradiso VM, Caponio F (2018) Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Res Int 108:48–56. https://doi.org/10.1016/j.foodres.2018.03.034

    Article  CAS  PubMed  Google Scholar 

  44. Hellwig M (2020) Analysis of protein oxidation in food and feed products. J Agric Food Chem 68(46):12870–12885. https://doi.org/10.1021/acs.jafc.0c00711

    Article  CAS  PubMed  Google Scholar 

  45. Baskol M, Baskol G, Koçer D, Ozbakir O, Yucesoy M (2008) Advanced oxidation protein products: a novel marker of oxidative stress in ulcerative colitis. J Clin Gastroenterol 42(6):687–691. https://doi.org/10.1097/MCG.0b013e318074f91f

  46. Zhong ZM, Bai L, Chen JT (2009) Advanced oxidation protein products inhibit proliferation and differentiation of rat osteoblast-like cells via NF-κB pathway. Cell Physiol Biochem 24(1–2):105–114. https://doi.org/10.1159/000227818

    Article  CAS  PubMed  Google Scholar 

  47. Apak R, Ozyurek M, Guclu K, Capanoglu E (2016) Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem 64(5):1046–1070. https://doi.org/10.1021/acs.jafc.5b04744

  48. Estévez M, Li Z, Soladoye OP, Van-Hecke T (2017) Health risks of food oxidation. Adv Food Nutr Res 82:45–81. https://doi.org/10.1016/bs.afnr.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  49. Zheng P, Bai X, Long J, Li K, Xu H (2016) Nitric oxide enhances the nitrate stress tolerance of spinach by scavenging ROS and RNS. Sci Hortic 213:24–33. https://doi.org/10.1016/j.scienta.2016.10.008

    Article  CAS  Google Scholar 

  50. Falowo AB, Fayemi PO, Muchenje V (2014) Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: a review. Food Res Int 64:171–181. https://doi.org/10.1016/j.foodres.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  51. Estévez M, Luna C (2017) Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr 57(17):3781–3793. https://doi.org/10.1080/10408398.2016.1165182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R.K., Coniglio, M.A., Laganà, P. (2022). The Role of Glycoalkaloids, Lipids, and Proteins in Tissue Inflammation. In: Natural Inflammatory Molecules in Fruits and Vegetables . SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-88473-4_3

Download citation

Publish with us

Policies and ethics