Skip to main content

Twin-Channel Gan: Repair Shape with Twin-Channel Generative Adversarial Network and Structural Constraints

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

  • 1894 Accesses

Abstract

The establishment of 3D content with deep learning has been a focus of research in computer graphics during past years. Recently, researchers analyze 3D shapes through the dividing-and-conquer strategy with the geometry information and the structure information. Although many works perform well, there are still several problems. For example, the geometry information missing and not plausible in structure. In this work, we propose the Twin-channel GAN for the 3D shape completion. In this framework, the structure information is well studied via the structural constraints for optimizing the details of 3D shapes. The experimental results also demonstrated that our method achieves better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, Jianxiong Xiao: 3d shapenets: A deep representation for vol-umetric shapes. In: Proceedings of the IEEE conferenceon computer vision and pattern recognition, pp. 1912–1920 (2015)

    Google Scholar 

  2. Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, Josh Tenenbaum: Learning a probabilistic latent space of object shapesvia 3d generative-adversarial modeling. In: Advances inneural information processing systems, pp. 82–90 (2016)

    Google Scholar 

  3. Gao, L., Yang, J., Tong, W., Yuan, Y.-J., Hongbo, F., Lai, Y.-K., Zhang, H.: Sdm-net: deep generative network for structured deformable mesh. ACM Trans. Graph. 38(6), 1–15 (2019)

    Google Scholar 

  4. Wu, Z., Wang, X., Lin, D., Lischinski, D., Cohen-Or, D., Huang, H.: SAGNet: structure-aware generative network for 3D-shape modeling. ACM Trans. Graph. (Proceedings of SIGGRAPH 2019) 38(4), 91:1–91:14 (2019)

    Google Scholar 

  5. Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N.J., Guibas, L.J.L: Structedit: learning structural shape variations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, 13–19 June 2020, pp. 8856–8865. IEEE (2020)

    Google Scholar 

  6. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  7. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 381–389 (2006)

    Google Scholar 

  8. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3d-encoder-predictor cnns and shape synthesis. In: Proceedings of the IEEE international conference on computer vision, pp. 6545–6554 (2017)

    Google Scholar 

  9. Huang, H., Li, Z., He, R., Sun, Z., Tan, T.: Introvae: introspective variational autoencoders for photographic image synthesis. In: Advances in Neural Information Processing Systems, pp. 52–63 (2018)

    Google Scholar 

  10. Goodfellow, I.J., et al.: Generative adversarial networks. Adv. Neural Inf. Process. Syst. 3, 2672–2680 (2014)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations (2014)

    Google Scholar 

  12. Averkiou, M., Kim, V.G., Zheng, Y., Mitra, N.J.: ShapeSynth: parameterizing model collections for coupled shape exploration and synthesis. In: Computer Graphics Forum, vol. 33, pp. 125–134. Wiley Online Library (2014)

    Google Scholar 

  13. Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36(4), 72 (2017)

    Google Scholar 

  14. Wang, J., Fang, Z.: GSIR: generalizable 3D shape interpretation and reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 498–514. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_30

    Chapter  Google Scholar 

  15. Sorkine, O., Cohen-Or, D.: Least-squares meshes. In: Proceedings of the IEEE Shape Modeling Applications, pp. 191–199 (2004)

    Google Scholar 

  16. Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. 25(3), 560–568 (2006)

    Article  Google Scholar 

  17. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  18. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: semantic scene completion from a single depth image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1746–1754 (2017)

    Google Scholar 

  19. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning, pp. 40–49 (2018)

    Google Scholar 

  20. Richard, A., Cherabier, I., Oswald, M.R., Pollefeys, M., Schindler, K.: KAPLAN: a 3D point descriptor for shape completion. In: International Conference on 3D Vision, 3DV 2020, Virtual Event, Japan, 25–28 November 2020, pp. 101–110. IEEE (2020)

    Google Scholar 

  21. Diamond, S., Boyd, S.P.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is part of the research supported by the Fundamental Research Funds for the Central Universities No. Y03019023601008011, the interactive Technology Research Fund of the Research Center for Interactive Technology Industry, School of Economics and Management, Tsinghua University (No. RCITI2021T006) and sponsored by TiMi L1 Studio of Tencent corporation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Z., Xie, N., Liu, Z., Zhang, X., Yang, Y. (2021). Twin-Channel Gan: Repair Shape with Twin-Channel Generative Adversarial Network and Structural Constraints. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics