Skip to main content

Surface Crack Detection of Rubber Insulator Based on Machine Vision

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

  • 3371 Accesses

Abstract

The surface crack detection of rubber insulator is an essential part of its quality inspection. Aiming at the problem of low efficiency and complicated operation of manual inspection, an automatic surface crack detection algorithm of rubber insulator based on local threshold algorithm is presented in this paper. Firstly, the source image is filtered by a Dimension-increased Bilateral Filter to weaken the effects of noise and the inherent texture of the rubber surface. Then, the filtered image is segmented by Sauvola Local Threshold to separate the cracks from the background. Subsequently, an algorithm combined morphological processing with Seed Filling algorithm is applied to connect the discontinuous cracks. Finally, the real cracks are located by measuring the connected domain and using the distance threshold. The experimental results show that the proposed method can effectively remove the background interference and accurately locate the cracks, with an accuracy of 94.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlos, J., Amado, Q., Ross, P.G., et al.: Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: a short review. Open Chem. 18(1), 1452–1467 (2020)

    Article  Google Scholar 

  2. Wei, H., Jiang, D.: Research on the depth inspection method of non-contact rubber surface defects. Chin. Sci. Technol. J. Database (Full-text Ed.) Eng. Technol. 00308–00310. (in Chinese)

    Google Scholar 

  3. Xuewu, Z., Yanqiong, D., et al.: Surface defects inspection of copper strips based on vision bionics. J. Image Graph. 16(04), 593–599 (2011). (in Chinese)

    Google Scholar 

  4. Li, J., Hu, H., Shen, J.: Research on micro defect detection method of small magnetic tile surface based on machine vision. Mech. Electr. Eng. 184(002), 117–123 (2019). (in Chinese)

    Google Scholar 

  5. Paris, S., Durand, F.A.: Fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vis. 81(1), 24–52 (2009)

    Article  Google Scholar 

  6. Lazzara, G., Geraud, T.: Efficient multiscale sauvola’s binarization. Int. J. Doc. Anal. Recogn. 17(2), 105–123 (2014)

    Article  Google Scholar 

  7. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Posts and Telecom Press, Thomson Brooks/Cole, Beijing (2002)

    Google Scholar 

  8. Lasheng, Yu., Deyao, S.: A refinement of scanning line seed filling algorithm. Comput. Eng. 10, 70–72 (2003). (in Chinese)

    Google Scholar 

  9. He, L.F., Chao, Y.Y., Suzuki, K., et al.: Fast connected-component labeling. Pattern Recogn. J. Pattern Recogn. Soc. 42(9), 1977–1987 (2009)

    Article  Google Scholar 

  10. Chunjian, H., Xuemei, X., Ying, C.: Feature extraction of workpiece circular arc contour based on sobel operator. J. Laser Optoelectron. Prog. 55(002), 233–240 (2018). (in Chinese)

    Google Scholar 

  11. Xiao, M., Li, J., Peng, Y.: A detection algorithm for the inner wall crack of ceramic bottles. Chin. Ceram. Ind. 27(04), 43–48 (2020). (in Chinese)

    Google Scholar 

  12. Jiawei, Z., Xing, F., He, C., et al.: Detection of crack in drying wood based on image processing. Heilongjiang Sci. Technol. Inf. (016), 14–16 (2019). (in Chinese)

    Google Scholar 

Download references

Acknowledgement

This research is partially supported by the key research project of the Ministry of Science and Technology (Grant No. 2018YFB1306802), the National Natural Science Foundation of China (Grant No. 51975344) and China Postdoctoral Science Foundation (Grant No. 2019M662591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Li, C., Zhang, X., Jiang, Y. (2021). Surface Crack Detection of Rubber Insulator Based on Machine Vision. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics