Skip to main content

Kinetostatic Modeling of Piezoelectric Displacement Amplifiers Based on Matrix Displacement Method

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

Displacement amplification ratio and input stiffness modeling of three types of piezoelectric displacement amplifiers (PDAs) were investigated in this paper. The main feature is that we further improved the accuracy of matrix displacement model (MDM) by setting a node on both input and output points, and simplified modeling process of the MDM by utilizing axial symmetry of PDAs. Firstly, we deduced the stiffness matrix of the flexure element based on the general flexure hinge’s compliance formulas. Then, we established the MDM of a PDA by discretizing a displacement amplifier into flexure elements and assembling element stiffness matrices. The finite element method was employed to verify the superiority of presented model and to compare with typical analytical models and conventional MDMs. The results show that the presented model of both the displacement amplification ratio and input stiffness has better accuracy on the whole, thanks to consider deformation of both the input and output points during modeling and abandons considering input and output ends as a lumped mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, R.Z., Zhang, X.M.: Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system. IEEE Trans. Industr. Electron. 65(3), 2388–2397 (2016)

    Article  Google Scholar 

  2. Chen, W.L., Lu, Q.H., Zhang, X.M., et al.: A novel compression-based compliant orthogonal displacement amplification mechanism for the typical actuators used in micro-grasping. Sens. Actuators A 297, 111463 (2019)

    Article  Google Scholar 

  3. Wang, Z.W., Zhang, X.M., Yin, Z.Q.: Design and stiffness modeling of a compact 3-dof compliant parallel nanopositioner for the tool servo of the ultra precision machining. In: 2018 IEEE International Conference on Robotics and Biomimetics, pp. 964–971. IEEE (2018)

    Google Scholar 

  4. Chen, F.X., Zhang, Q.J., Gao, Y.Z., et al.: A Review on the flexure-based displacement amplification mechanisms. IEEE Access 8, 205919–205937 (2020)

    Article  Google Scholar 

  5. Lobontiu, N., Garcia, E.: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput. Struct. 81(32), 2797–2810 (2003)

    Article  Google Scholar 

  6. Xu, Q.S., Li, Y.M.: Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mech. Mach. Theory 46(2), 183–200 (2011)

    Article  Google Scholar 

  7. Qi, K.Q., Xiang, Y., Fang, C., et al.: Analysis of the displacement amplification ratio of bridge-type mechanism. Mech. Mach. Theory 87, 45–56 (2015)

    Article  Google Scholar 

  8. Ling, M., Cao, J., Zeng, M., et al.: Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart Mater. Struct. 25(7), 075022 (2016)

    Article  Google Scholar 

  9. Liu, P., Peng, Y.: Kinetostatic modeling of bridge-type amplifiers based on Timoshenko beam constraint model. Int. J. Precis. Eng. Manuf. 19(9), 1339–1345 (2018)

    Article  Google Scholar 

  10. Zhang, Q., Zhao, J., Peng, Y., et al.: A novel amplification ratio model of a decoupled XY precision positioning stage combined with elastic beam theory and Castigliano’s second theorem considering the exact loading force. Mech. Syst. Signal Process. 136, 106473 (2020)

    Article  Google Scholar 

  11. Wang, H., Zhang, X.M.: Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage. Mech. Mach. Theory 43(4), 400–410 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ling, M.X., Cao, J.Y., Howell, L.L., et al.: Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: a semi-analytical matrix displacement method. Mech. Mach. Theory 125, 169–184 (2018)

    Article  Google Scholar 

  13. Ling, M.X.: A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers. Mech. Syst. Signal Process. 119, 486–500 (2019)

    Article  Google Scholar 

  14. Lobontiu, N.: Note: bending compliances of generalized symmetric notch flexure hinges. Rev. Sci. Instrum. 83(1), 249–253 (2012)

    Article  Google Scholar 

  15. Bathe, K.J.: Finite Element Procedures. 2nd edn. Prentice Hall, New Jersey (2014)

    Google Scholar 

  16. Wu, Y.F., Zhou, Z.Y.: Design calculations for flexure hinges. Rev. Sci. Instrum. 73(8), 3101–3106 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 52035013), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515020053 & 2021A1515012418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, D., Zhu, B., Li, H., Zhang, X. (2021). Kinetostatic Modeling of Piezoelectric Displacement Amplifiers Based on Matrix Displacement Method. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics