Skip to main content

Modeling of Chatter Stability in Robot Milling

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

  • 3575 Accesses

Abstract

Compared with CNC machines, articulated robots show significant pose-dependent dynamic characteristics. Thus, the chatter mechanism of robot milling is murky. Furthermore, trajectory accuracy is also dependent on robot pose, resulting in complexity of the robot milling stability. In this paper, robot trajectory tracking error, independent from tool speed, can be seen as an external disturbance to the classical regenerative chatter model. With the consideration of robot trajectory tracking error, a new robot milling dynamic model was proposed to study the chatter stability in robot milling process. Robot milling tests have been carried out to verify the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei, Y., Zengxi, P., Donghong, D., Shuai, S., Mcps, L.W.: A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism. IEEE/ASME Trans. Mech. 1–11 (2018)

    Google Scholar 

  2. Pan, Z., Zhang, H., Zhu, Z., Wang, J.: Chatter analysis of robotic machining process. J. Mater. Process. Technol. 173(3), 301 (2006)

    Article  Google Scholar 

  3. Alexander, V., Valente, A., Shreyes, M., Christian, B., Erdem, O., Tunc, L.T.: Robots in machining. CIRP Ann. Manuf. Tech. 68, 799–822 (2019)

    Article  Google Scholar 

  4. Guo, Y., Dong, H., Wang, G., Ke, Y.: Vibration analysis and suppression in robotic boring process. Int. J. Mach. Tool Manuf. 101, 102–110 (2006)

    Article  Google Scholar 

  5. Cordes, M., Hintze, W., Altintas, Y.: Chatter stability in robotic milling. Robot. Comput. Integr. Manuf. 55, 11–18 (2006)

    Article  Google Scholar 

  6. Tunc, L.T., Stoddart, D.: Tool path pattern and feed direction selection in robotic milling for increased chatter-free material removal rate. Int. J. Adv. Manuf. Technol. 89(9–12), 2907–2918 (2017). https://doi.org/10.1007/s00170-016-9896-2

    Article  Google Scholar 

  7. Wan, M., Zhang, W.H., Dang, J.W., et al.: A unified stability prediction method for milling process with multiple delays. Int. J. Mach. Tools Manuf. 50(1), 29–41 (2010)

    Article  Google Scholar 

  8. Insperger, T., Stepan, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Meth. Eng. 61, 117–141 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China No. 2018YFB1308900, the Natural Science Foundation of Hubei Province, China under Grant No. 2020CFA077 and the Basic national Defense Research of China No. JCKY2018205C004.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, D., Zhang, G., Zhao, H., Ding, H. (2021). Modeling of Chatter Stability in Robot Milling. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics