Skip to main content

Identification of Non-linear Chemical Systems with Neural Networks

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2021)

Abstract

This study proposes the use of neural networks, specifically NARX networks, in the modeling of non-linear chemical systems with the use of the control field systems identification methodology. The chemical reactor of the Tennessee Eastman, responsible for the greater non-linearities of the plant, is studied. First, a simple decentralized control scheme is proposed for the stabilization of the plant, an identification experiment is designed, and two sub-models are trained for the level and pressure of the reactor, obtaining satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Downs, J.J., Vogel, E.: A plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

    Article  Google Scholar 

  2. Ricker, N.L.: Decentralized control of the tennessee eastman challenge process. J. Proc. Cont. 6(4), 205–221 (1996)

    Article  Google Scholar 

  3. Juricek, B.C., Seborg, D.E., Larimore, W.E.: Identification of the Tennessee Eastman challenge process with subspace methods. Control Eng. Pract. 9, 1337–1351 (2001)

    Article  Google Scholar 

  4. Sheta, A., Braik, M., Al-Hiary, H.: Identification and model predictive controller design of the tennessee eastman chemical process using ANN. In: Proceedings of the 2009 International Conference on Artificial Intelligence, ICAI 2009, 13–16 July 2009, Las Vegas Nevada, USA, 2 Volumes (2009)

    Google Scholar 

  5. Bathelt, A., Jelali, M.: Comparative study of subspace identification methods on the tennessee eastman process under disturbance effects. In: 5th International Symposium on Advanced Control of Industrial Processes 28–30 May 2014, Hiroshima, Japan (2014)

    Google Scholar 

  6. Sheta, A., Faris, H.: Identification of the Tennessee Eastman chemical process reactor using genetic programming. Int. J. Adv. Sci. Technol. 50, 121–140 (2013)

    Google Scholar 

  7. González, L.G., González Santos, A.I.: Desarrollo de un modelo de caja gris para el caso base de la planta Tennessee Eastman. RIELAC 41, 18–33 (2020)

    Google Scholar 

  8. Aljarah, I., Faris, H., Mirjalili, S., Al-Madi, N., Sheta, A., Mafarja, M.: Evolving neural networks using bird swarm algorithm for data classification and regression applications. Clust. Comput. 22(4), 1317–1345 (2019). https://doi.org/10.1007/s10586-019-02913-5

    Article  Google Scholar 

  9. Sheta, A., Braik, M., Al-Hiary, H.: Modeling the Tennessee Eastman chemical process reactor using bio-inspired feedforward neural network (BI-FF-NN). Int. J. Adv. Manuf. Technol. 103, 1359–1380 (2019)

    Article  Google Scholar 

  10. He, R., Chen, G., Dong, C., Sun, S., Shen, X.: Data-driven digital twin technology for optimized control in process systems. ISA Trans. 95, 221–234 (2019)

    Article  Google Scholar 

  11. McVoy, T.J., Ye, N.: Base control for the Tennessee Eastman problem. Comput. Chem Eng. 18(5), 383–413 (1994)

    Article  Google Scholar 

  12. McVoy, T.J., Ye, N., Gang, C.: An improved base control for the Tennessee Eastman problem. In: Proceedings of the American Control Conference, Seatle, Washington, June 1995

    Google Scholar 

  13. Martin-Villaba, C., Urquia, A., Shao, G.: Implementations of the Tennessee Eastman process in Modelica. IFAC PapersOnLine. 51(2), 619–624 (2018)

    Article  Google Scholar 

  14. Brunton, S.L., Kutz, J.N.: Data Driven Science & Engineering Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  15. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural Network Design. 2nd edn. PSW Publising (1996). ISBN: 0-971732 1-0-8

    Google Scholar 

  16. Contreras, W., Arichávala, M., Jérez, C.: Determinación de la presión máxima de compresión de un motor de encendido provocado basado en una red neuronal artificial recurrente. INGENIUS 19, 9–18 (2019)

    Google Scholar 

  17. Hieu, D.X., Anh, D.T.L., Phuoc, N.D., Thanh, D.V., Cuong, D.D.: Temperature prediction and model predictive control (MPC) of a distillation column using an artificial neural network based model. In: 2017 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, pp. 113–118 (2017). https://doi.org/10.1109/ICSSE.2017.8030848

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oramas Rodríguez, R.A., González Santos, A.I., García González, L. (2021). Identification of Non-linear Chemical Systems with Neural Networks. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89691-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89690-4

  • Online ISBN: 978-3-030-89691-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics