Skip to main content

Optimized Fuzzy Control with Genetic Algorithms and Differential Evolution for Tracking the Trajectories of an Ankle Prosthesis

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13068))

Included in the following conference series:

  • 708 Accesses

Abstract

This work presents a comparison between three Mandani controllers (trial and error, optimized with Genetic Algorithms (GA), and Differential Evolution (DE)) and a traditional PID controller in the trajectory tracking application in the sagittal/frontal planes of an ankle, considering a disturbance that simulates the existence of an irregularity in the walking surface. The controller rulebase design uses only the error signals and the error derivative. For the implementation of the mentioned controllers, a co-simulation is presented using the MatLAb fuzzy Toolbox, Simulink PID block of Matlab, and Adams View. From the results obtained, a comparison is made to determine the computation time and the position error to choose the best one for the tracking the trajectories of an ankle prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwak, H., Kim, D., Park, G.: A new fuzzy inference technique for singleton type-2 fuzzy logic systems. Int. J. Adv. Robot. Syst. 9, 1–7 (2012)

    Article  Google Scholar 

  2. Farfán-Martínez, R., Ruz-Hernández, J., Rullán-Lara, J.: Control Difuso Tipo 2 en el Enfoque de Lyapunov Aplicado a un Servomecanismo. In: Sexto Coloq. Interdiscip. Dr. - Univ. Pop. Autónoma del Estado Puebla, pp. 1–9 (2013)

    Google Scholar 

  3. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  4. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. Readings Fuzzy Sets Intell. Syst. 1, 387–403 (1993)

    Article  Google Scholar 

  5. Fernandez, C., Pantano, N., Godoy, S., Serrano, E., Scaglia, G.: Optimización de parámetros utilizando los métodos de Monte Carlo y Algoritmos Evolutivos. Aplicación a un controlador de seguimiento de trayectoria en sistemas no lineales. Revista Iberoamericana de Automática e Informática industrial 16, 89–99 (2019)

    Google Scholar 

  6. Mitra, S., Maulik, P., Chowdhury, S., Chowdhory, S.P.: ANFIS based automatic voltage regulator with hybrid learning algorithm. In: 2007 42nd International Universities Power Engineering Conference, vol. 1, pp. 397–401 (2007)

    Google Scholar 

  7. Mazzucco, M.M., Bolzan, A., Barcia, R.M., Machado, R.A.: Application of genetic algorithms to the adjustment of the supports of fuzzy sets in a mamdani controller. Braz. J. Chem. Eng. 17, 625–638 (2000)

    Article  Google Scholar 

  8. A-Darraji, I., Kılıç, A., Kapucu, S.: Mechatronic design and genetic algorithm based MIMO fuzzy control of adjustable stiffness tendon driven finger. Mech. Sci. 9, 277–296 (2018)

    Google Scholar 

  9. Pishkenari, H.N., Mahboobi, S.H., Alasty, A.: Optimum synthesis of fuzzy logic controller for trajectory tracking by differential evolution. Sci. Iran. Trans. B Mech. Eng. 18, 261–267 (2011)

    Google Scholar 

  10. Xia, C., Guo, P., Shi, T., Wan, M.: Speed control of brushless DC motor using genetic algorithm based fuzzy controller. In: Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation, pp. 460–464 (2004)

    Google Scholar 

  11. Orlowska-Kowalska, T., Szabat, K.: Optimization of fuzzy-logic speed controller for DC drive system with elastic joints. IEEE Trans. Ind. Appl. 40(4), 1138–1144 (2004)

    Article  Google Scholar 

  12. Ö-ztürk, N., Çelik, E.: Speed control of permanent magnet synchronous motors using fuzzy controller based on genetic algorithms. Elsevier Electr. Power Energy Syst. 43, 889–898 (2012)

    Article  Google Scholar 

  13. Ashu, A., Sanjeev, K.A.: Design of fractional order PID controller for DC motor using evolutionary optimization techniques. WSEAS Trans. Syst. Control 9, 171–182 (2014)

    Google Scholar 

  14. Sung-Kwun, O., Wook-Dong, K., Witold, P.: Design of optimized cascade fuzzy controller based on differential evolution: simulation studies and practical insights. ELSEVIER Eng. Appl. Artif. Intell. 25, 520–532 (2012)

    Article  Google Scholar 

  15. Nguyen, H.T.: A First Course in Fuzzy and Neural Control, vol. 1. Chapman & Hall/CRC, Boca Raton (2003)

    Google Scholar 

  16. Viladot Voegeli, A.: Anatomía funcional y biomecánica del tobillo y el pie. Rev. Española Reumatol. 30(9), 469–477 (2003)

    Google Scholar 

  17. Lippert, L.S.: Ankle Joint and Foot. Clinical kinesiology and Anatomy, vol. 5. F. A. Davis Co., Philadelphia (2011)

    Google Scholar 

  18. Jie, C., Sorin, S., Schneck, C.: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints-part I: kinematics. Engineering 110(2), 364–373 (1988)

    Google Scholar 

  19. Begg, R.K., Sparrow, W.A.: Ageing effects on knee and ankle joint angles at key events. J. Med. Eng. Technol. 30(6), 382–389 (2006)

    Google Scholar 

  20. Parkinson, A., Balling, R., Hedengren, J.: Optimization Methods for Engineering Design. Applications and Theory, pp. 2–3. Brigham Young University, Provo (2013)

    Google Scholar 

  21. Téllez-Velázquez, A., et al.: A feasible genetic optimization strategy for parametric interval type-2 fuzzy logic systems. Int. J. Fuzzy Syst. 20, 1–23 (2017)

    Google Scholar 

  22. Cuevas Jiménez, E., Usuna Enciso, J., Olivia Navarro, D., Díaz Córtes, M.: OPTIMIZACIÓN Algoritmos programados con MATLAB. Alfaomega (2016)

    Google Scholar 

  23. Ogata, K.: Modern Control Engineering, 4th edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Lugo-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambrocio-Delgado, R., Téllez-Velázquez, A., Lugo-González, E., Espinosa-Garcia, F. (2021). Optimized Fuzzy Control with Genetic Algorithms and Differential Evolution for Tracking the Trajectories of an Ankle Prosthesis. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89820-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89819-9

  • Online ISBN: 978-3-030-89820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics