Skip to main content

Treatment Options in CoViD19

  • Chapter
  • First Online:
Cardiovascular Complications of COVID-19
  • 523 Accesses

Abstract

The rapid global spread of CoViD19, high transmissibility, and the threat of complications, especially in the high-risk patients with cardiometabolic diseases, and chronic respiratory diseases, have prompted the researchers, clinicians, and scientific community to aggressively explore several effective and safe treatment options and prevention methods. Many coordinated efforts of the experts and scientists have led to the development of protocols and expert guidelines to combat CoViD19. Various complex pathogenetic mechanisms facilitate the development of CoViD19 related complications. The hyperimmune, hyperinflammatory, prothrombotic mechanisms and viral cell entry or viral assembly processes serve as main therapeutic targets in CoViD19. The therapeutic agents, such as immune modifiers, antivirals, antibacterial agents, anticoagulants, and others currently used in the clinical practice, alone or as combination therapies, are also undergoing further investigations in several clinical trials globally. In this chapter, we provide an overview of the pathogenetic mechanisms and therapeutic agents as well as the important treatment and disease prevention strategies that are recommended, used in clinical practice, or are currently explored in clinical trials globally. We also provide the background data from the published evidence to help readers to understand the basic concepts related to the safety and efficacy of the principal CoViD19 therapeutic interventions and anti CoViD9 vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ClinicalTrials.gov. Prevention of Arteriovenous Thrombotic Events in Critically-Ill COVID19 Patients Trial (COVID-PACT). Identifier: NCT04409834. Last updated June 1, 2020. https://clinicaltrials.gov/ct2/show/NCT04409834.

  2. Lurie N, Saville M, Hatchett R, Halton J. Developing CoViD19 Vaccines at Pandemic Speed. N Engl J Med. 2020;382(21):1969–73. https://doi.org/10.1056/NEJMp2005630.

    Article  CAS  PubMed  Google Scholar 

  3. Cao Bin et al. A trial of lopinavir–ritonavir in adults hospitalized with severe CoViD19. New England Journal of Medicine. 2020.

    Google Scholar 

  4. Horby Peter W et al. Lopinavir–ritonavir in patients admitted to hospital with COVID19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet. 2020;396.10259 (2020):1345–52.

    Google Scholar 

  5. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–704. https://doi.org/10.1016/S0140-6736(20)31042-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe CoViD19 [published online ahead of print, 2020 Apr 10]. N Engl J Med. 2020; NEJMoa2007016. doi:https://doi.org/10.1056/NEJMoa2007016.

  7. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID19: a randomised, double-blind, placebo-controlled, multicentre trial [published correction appears in Lancet. 2020 May 30;395(10238):1694. Lancet. 2020;395(10236):1569–78. doi:https://doi.org/10.1016/S0140-6736(20)31022-9.

  8. National Institute of Health (NIH). NIH clinical trial shows remdesivir accelerates recovery from advanced COVID19. https://www.niaid.nih.gov/news-events/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-CoViD19. Accessed May 6, 2020.

  9. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID19: a randomised, double-blind, placebo-controlled, multicentre trial [published correction appears in Lancet. 2020 May 30; 395(10238):1694]. Lancet. 2020; 395(10236):1569–1578. doi:10.1016/S0140-6736(20)31022-9.

    Google Scholar 

  10. Beigel John H et al. Remdesivir for the Treatment of CoViD19-Preliminary Report. New Engl J Med. 2020.

    Google Scholar 

  11. Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect 2020; Apr 25. doi:https://doi.org/10.1016/j.cmi.2020.04.026.

  12. Chen C, Zhang Y, Huang J, et al. Favipiravir versus arbidol for COVID19: a randomized clinical trial. medRxiv 2020; April 15. doi:https://doi.org/10.1101/2020.03.17.20037432.

  13. Johnson & Johnson Services, Inc. Lack of evidence to support use of darunavir-based treatments for SARS CoV2. https://www.jnj.com/lack-of-evidence-to-support-darunavir-based-hiv-treatments-for-coronavirus. Accessed June 4, 2020.

  14. Coronavirus FDA. Update: FDA Issues Emergency Use Authorization for Potential COVID19 Treatment, 2020 (2020). Coronavirus (COVID19) Update: FDA Issues Emergency Use Authorization for Potential COVID19 Treatment | FDA. Accessed on Dec 03 2020.

    Google Scholar 

  15. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S.SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Mar 4. pii: S0092-8674(20)30229–4. doi: https://doi.org/10.1016/j.cell.2020.02.052.

  16. Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 2012;86:6537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bittmann S, et al. TMPRSS2-Inhibitors Play a role in Cell Entry Mechanism of COVID19: An Insight into Camostat and Nefamostat. J Regen Biol Med. 2020;2(2):1–3.

    Google Scholar 

  18. https://www.clinicaltrials.gov/ct2/show/NCT04418128?term=nafamostat&cond=Corona+Virus+Infection&draw=2&rank=1 ClinicalTrials.gov Identifier: NCT04418128. Last updated June 09,2020. Accessed on December 10, 2020.

  19. https://www.clinicaltrials.gov/ct2/show/NCT04352400?term=nafamostat&cond=Corona+Virus+Infection&draw=2&rank=2 ClinicalTrials.gov Identifier: NCT04352400. Last updated April 20,2020. Accessed on December 10, 2020.

  20. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS CoV2 receptor: molecular mechanisms and potential therapeutic target. Inten Care Med. 2020;46(4):586–90. https://doi.org/10.1007/s00134-020-05985-9.

    Article  CAS  Google Scholar 

  21. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krahenbuhl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52:783–92. https://doi.org/10.1007/s40262-013-0072-7.

    Article  CAS  PubMed  Google Scholar 

  22. Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21:234. https://doi.org/10.1186/s13054-017-1823-x.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Crit Care. 2017;21:305. https://doi.org/10.1186/s13054-017-1882-z.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Luo S, Libby P, Shi GP. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID19 patients [published online ahead of print, 2020 May 26]. Pharmacol Ther. 2020;107587. doi: https://doi.org/10.1016/j.pharmthera.2020.107587.

  25. Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W, Fan CF, Jin RH, Feng YM, Wang YC, Yang JK. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduction and Targeted Therapy. 2021;6(1):1–12.

    Google Scholar 

  26. Wang Ke et al. SARS CoV2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020.

    Google Scholar 

  27. Richardson Peter et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395.10223:e30.

    Google Scholar 

  28. Ojha PK, Kar S, Krishna JG, Roy K, Leszczynski J. Therapeutics for COVID19: from computation to practices—where we are, where we are heading to. Molec Div. 2020;1–35.

    Google Scholar 

  29. Zhou D, Dai SM, Tong Q. COVID19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020;75(7):1667–70.

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro Cell Res. 2020;1–3. https://doi.org/10.1038/s41422-020-0282-0.

  31. Salata C, Calistri A, Parolin C, Baritussio A, Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther. 2017;15:483–92. https://doi.org/10.1080/14787210.2017.1305888pmid:28286997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang TT, Lv LL, Pan MM, Wen Y, Wang B, Li ZL, Wu M, Wang FM, Crowley SD, Liu BC. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 2018;9:351.

    Google Scholar 

  33. Shivanna V, Kim Y, Chang KO. Endosomal acidification and cathepsin L activity is required for calicivirus replication. Virology. 2014;464–465:287–295; Wang et al., 2020a.

    Google Scholar 

  34. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell. 2004;14:207–19.

    Article  CAS  PubMed  Google Scholar 

  35. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–1455.

    Google Scholar 

  36. Xueting Yao, Fei Ye, Miao Zhang, Cheng Cui, Baoying Huang, Peihua Niu, Xu Liu, Li Zhao, Erdan Dong, Chunli Song, Siyan Zhan, Roujian Lu, Haiyan Li, Wenjie Tan, Dongyang Liu. In Vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS CoV2). Clin Infec Dis. ciaa237. https://doi.org/10.1093/cid/ciaa237.

  37. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. Doi:https://doi.org/10.1186/1743-422X-2-69 pmid:16115318.

  38. Boone BA, Murthy P, Miller-Ocuin J, Doerfer WR, Ellis JT, Liang X, Ross MA, Wallace CT, Sperry JL, Lotze MT, Neal MD, Zeh HJ 3rd. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. 2018;18:678.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Letter to Dr Rick Bright re: request for Emergency Use Authorization for use of chloroquine phosphate or hydroxychloroquine sulfate supplied from the strategic national stockpile for treatment of 2019 coronavirus disease. Published March 28, 2020. Accessed August 3, 2020. https://www.fda.gov/media/136534/download.

  40. National Health Commission of the People’s Republic of China. COVID-19 Treatment Guideline, the 8th Edition 2020.essed 2 Mar 2021.

    Google Scholar 

  41. https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization.

  42. Wang Manli et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. doi:https://doi.org/10.1038/s41422-020-0282-0.

  43. Million M, Lagier JC, Gautret P, et al. Early treatment of COVID19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France [published online ahead of print, 2020 May 5 Travel Med Infect Dis. 2020;101738. doi:https://doi.org/10.1016/j.tmaid.2020.101738.

  44. Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 CoViD19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis. 2020;34. https://doi.org/10.1016/j.tmaid.2020.101663pmid:32289548.

  45. Mahévas M, Tran V-T, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with CoViD19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844. doi:https://doi.org/10.1136/bmj.m1844 pmid:32409486.

  46. Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID19 in New York State. JAMA. Published online May 11, 2020. doi:https://doi.org/10.1001/jama.2020.8630.

  47. Tang Wei, Cao Zhujun, Han Mingfeng, Wang Zhengyan, Chen Junwen, Sun Wenjin et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849.

    Google Scholar 

  48. Cavalcanti Alexandre B et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate CoViD19. New England J Med. 2020;383(21):2041–2052.

    Google Scholar 

  49. Horby Peter et al. Dexamethasone in hospitalized patients with CoViD19-preliminary report. The New England Journal of Medicine. 2020.

    Google Scholar 

  50. Horby Peter et al. Effect of Hydroxychloroquine in Hospitalized Patients with COVID19: preliminary results from a multi-centre, randomized, controlled trial. MedRxiv. 2020.

    Google Scholar 

  51. National Institutes of Health (NIH) NIH halts clinical trial of hydroxychloroquine NIH (20 June 2020). https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine. Accessed 01 December 2020.

  52. World Health Organization. WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID19. Geneva, Switzerland: WHO. Available at: https://www.who.int/news-room/detail/04-07-2020-who-discontinueshydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-forCoViD19. Accessed July 6 (2020):2020

  53. Mitjà Oriol et al. Hydroxychloroquine for early treatment of adults with mild CoViD19: a randomized-controlled trial. Clinical Infectious Diseases. 2020.

    Google Scholar 

  54. Skipper Caleb P et al. Hydroxychloroquine in nonhospitalized adults with early COVID19: a randomized trial. Ann Int Med. 2020;173.8:623–631.

    Google Scholar 

  55. Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with CoViD19. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2012410pmid:32379955.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Borba MGS, Val FFA, Sampaio VS, et al. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS CoV2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCoViD19 Study). medRxiv [Preprint] 2020. doi:https://doi.org/10.1101/2020.04.07.20056424.

  57. Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID19 treated with hydroxychloroquine and azithromycin [published online ahead of print, 2020 Apr 24]. Nat Med. 2020;https://doi.org/10.1038/s41591-020-0888-2. doi:https://doi.org/10.1038/s41591-020-0888-2.

  58. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366(20):1881–90. https://doi.org/10.1056/NEJMoa1003833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mercuro Nicholas J et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID19). JAMA cardiology. 2020.

    Google Scholar 

  60. Eliesbik. Thoughts on the Gautret et al. paper about Hydroxychloroquine and Azithromycin treatment of COVID19 infections. Science Integrity Digest. 2020. https://scienceintegritydigest.com/2020/03/24/thoughts-on-the-gautret-et. Accessed 17 May 2020, https://pubpeer.com/publications/B4044A446F35DF81789F6F20F8E0EE.

  61. Emani Venkata R et al. Randomized controlled trials for COVID19: evaluation of optimal randomization methodologies-need for the data validation of the completed trials, and to improve the ongoing and future randomized trial designs. Int J Antim Agents.2020;106222.

    Google Scholar 

  62. Hernandez, Adrian V., et al. “Update alert: hydroxychloroquine or chloroquine for the treatment or prophylaxis of COVID19.“ Annals of internal medicine 173.4 (2020):W78-W79.

    Google Scholar 

  63. Tang Wei, Cao Zhujun, Han Mingfeng, Wang Zhengyan, Chen Junwen, Sun Wenjin et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial BMJ. 2020;369:m1849.

    Google Scholar 

  64. Alexander PE, Debono VB, Mammen MJ, et al. COVID19 coronavirus research has overall low methodological quality thus far: case in point for chloroquine/hydroxychloroquine [published online ahead of print, 2020 Apr 21]. J Clin Epidemiol. 2020;S0895–4356(20):30371–1. doi:https://doi.org/10.1016/j.jclinepi.2020.04.016.

  65. Ferner Robin E, Aronson Jeffrey K. Chloroquine and hydroxychloroquine in CoViD19. BMJ. 2020;369:m1432.

    Google Scholar 

  66. Skipper Caleb P et al. Hydroxychloroquine in nonhospitalized adults with early COVID19: a randomized trial. Annals Int Med. 2020;173(8):623631.

    Google Scholar 

  67. Hernandez Adrian V et al. Update alert 2: hydroxychloroquine or chloroquine for the treatment or prophylaxis of COVID19. Annals Int Med. 2020;173(7):W128–9.

    Google Scholar 

  68. Schluger NW. The saga of hydroxychloroquine and COVID19: a cautionary tale. Ann Intern Med. 2020;173(8):662–3.

    Article  PubMed  Google Scholar 

  69. ClincalTrials.gov. Open Label Study to Compare Efficacy, Safety and Tolerability of Hydroxychloroquine Combined With Azithromycin Compared to Hydroxychloroquine Combined With Camostat Mesylate and to “no Treatment” in SARS CoV2 Virus (COSTA).Identifier NCT04355052. Last updated April 21, 2020. https://clinicaltrials.gov/ct2/show/NCT04355052.

  70. ClincalTrials.gov. Combination Therapy With Camostat Mesilate + Hydroxychloroquine for COVID19 (CLOCC). Identifier NCT04338906. Last updated Apr 08. 2020. https://clinicaltrials.gov/ct2/show/NCT04338906.

  71. Clinicaltrial.gov. Evaluating the efficacy of hydroxychloroquine and azithromycin to prevent hospitalization or death in persons with CoViD19. 2020. https://clinicaltrials.gov/ct2/show/NCT04358068.

  72. http://www.isrctn.com/ISRCTN86534580 PRINCIPLE: a trial evaluating treatments for suspected COVID19 in people aged 50 years and above with pre-existing conditions and those aged 65 years and above. ISRCTN86534580, https://doi.org/10.1186/ISRCTN86534580. Last updated/05/2020.

  73. Crisafulli Salvatore et al. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID19: rationale, clinical evidence and risks. BioDrugs. 34(4):415–22.

    Google Scholar 

  74. ClinicalTrials.gov. Tocilizumab in COVID19 Pneumonia (TOCIVID-19) (TOCIVID19). Identifier: NCT04317092. Last updated April 7, 2020. https://www.clinicap-;/ltrials.gov/ct2/show/NCT04317092.

    Google Scholar 

  75. ClinicalTrials.gov.Tocilizumab vs CRRT in Management of Cytokine Release Syndrome (CRS) in COVID19 (TACOS). Identifier: NCT04306705. Last updated March 17, 2020. https://clinicaltrials.gov/ct2/show/NCT04306705.

  76. Anti Interlukin-6 Receptor mAB. Accessed on December 4, 2020. http://www.tizianalifesciences.com/drug-pipeline/anti-il-6r/.

  77. ClinicalTrials.gov. Tocilizumab for SARS-CoV2 Severe Pneumonitis. Identifier: NCT04315480. Last updated April 13, 2020. https://clinicaltrials.gov/ct2/show/NCT04315480.

  78. ClinicalTrials.gov. Evaluation of the Efficacy and Safety of Sarilumab in Hospitalized Patients With COVID19. Identifier: NCT04315298. Last updated April 6, 2020. https://www.clinicaltrials.gov/ct2/show/NCT04315298.

  79. ClinicalTrials.gov. Study on the Use of Sarilumab in Patients With COVID19 Infection. Identifier: NCT04386239. Last updates May 13, 2020. https://clinicaltrials.gov/ct2/show/NCT04386239. Anti Interlukin-6 Receptor mAB Tiziana Life Sciences Accessed on 4 December 2020).

  80. Alattar Rand et al. Tocilizumab for the Treatment of Severe COVID‐19. J Med Virol. 2020.

    Google Scholar 

  81. Sciascia S, et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in severe patients with COVID19. Clin Exp Rheumatol. 2020;38(3):529–32.

    PubMed  Google Scholar 

  82. Xu Xiaoling et al. Effective treatment of severe COVID19 patients with tocilizumab. Proc Nat Acad Sci. 2020;117(20):10970–5.

    Google Scholar 

  83. Biran Noa et al. Tocilizumab among patients with COVID19 in the intensive care unit: a multicentre observational study. Lancet Rheumatol. 2020;2(10):e603–12.

    Google Scholar 

  84. Roche. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID19 associated pneumonia. [cited 2020 Jul 29 ]. Available from: https://www.roche.com/investors/updates/inv-update-2020-07-29.htm.

  85. Furlow Bryant. COVACTA trial raises questions about tocilizumab's benefit in COVID19. Lancet Rheum. 2020;2(10):e592.

    Google Scholar 

  86. Zhou Zeyun, Christina C Price. Overview on the use of IL-6 agents in the treatment of patients with cytokine release syndrome (CRS) and pneumonitis related to COVID19 disease. Expert opinion on investigational drugs. 2020.

    Google Scholar 

  87. Villar Jesús et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Resp Med. 2020;8(3):267–76.

    Google Scholar 

  88. Hung Ivan Fan-Ngai et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID19: an open-label, randomised, phase 2 trial. Lancet (London, England). 2020;395(10238):1695–1704. doi:https://doi.org/10.1016/S0140-6736(20)31042-4.

  89. Fernandez-Cruz Ana et al. Impact of glucocorticoid treatment in sars cov2 infection mortality: a retrospective controlled cohort study. medrxiv. 2020.

    Google Scholar 

  90. NIH COVID19 treatment guidelines. NIH. https://www.covid19treatmentguidelines.nih.gov/whats-new/ Updated on December 03 2020 Accessed on December 11, 2020.

  91. Wu Dandan, Xuexian O Yang. TH17 responses in cytokine storm of COVID19: an emerging target of JAK2 inhibitor Fedratinib. J Microb Immunol Infect. 2020. ClinicalTrials.gov Identifier: NCT04640168 Last updated on November 23, 2020. Accessed on December 10, 2020.

    Google Scholar 

  92. https://www.clinicaltrials.gov/ct2/show/NCT04421027?term=baricitinib&cond=Corona+Virus+Infection&draw=2&rank=3 ClinicalTrials.gov Identifier: NCT04421027. Last updated on June 09, 2020. Accessed on December 10, 2020.

  93. https://www.clinicaltrials.go v/ct2/show/NCT04640168?term=baricitinib&cond=Corona+Virus+Infection&draw=2&rank=5 ClinicalTrials.gov Identifier: NCT04640168 Last updated on Accessed on November 23, 2020. December 10, 2020.

  94. https://www.clinicaltrials.gov/ct2/show/NCT04452565?term=dexamethasone&cond=COVID19&draw=5&rank=13 ClinicalTrials.gov Identifier: NCT04452565. Last updated on September 07, 2020. Accessed on December 11, 2020.

  95. https://www.clinicaltrials.gov/ct2/show/NCT04509973?term=dexamethasone&cond=COVID19&draw=6&rank=4 ClinicalTrials.gov Identifier: NCT04509973. Last updated on September 01, 2020. Accessed on December 11, 2020.

  96. Chen Long et al. Convalescent plasma as a potential therapy for COVID19. Lanc Infect Dis. 2020;20(4):398–400.

    Google Scholar 

  97. https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-CoViD19-convalescent-plasma.

  98. Food and Drug Administration. EUA 26382: Emergency Use Authorization (EUA) decision memo. 2020. Available at: https://www.fda.gov/media/141480/download. Accessed December 07, 2020.

  99. https://www.fda.gov/news-events/press-announcements/coronavirus-CoViD19-update-fda-authorizes-monoclonal-antibody-treatment-CoViD19 Immediate Release: November 09, 2020 Accessed on December 07 2020.

  100. U.S. Food and Drug Administration. Letter of FDA Emergency Use Authorization to Eli Lilly and Company dated November 10, 2020. In: Phillips C, Eli Lilly and Company, 2020.

    Google Scholar 

  101. https://www.fda.gov/media/143891/download Issued on November 21, 2020 Accessed on December 09, 2020.

  102. Galeotti Caroline, Srini V Kaveri, Jagadeesh Bayry. Intravenous immunoglobulin immunotherapy for coronavirus disease‐19 (COVID‐19). Clin Transl immunol. 2020;9(10):e1198.

    Google Scholar 

  103. https://www.clinicaltrials.gov/ct2/show/NCT04432324?term=IVIG&cond=Corona+Virus+Infection&draw=2&rank=1 ClinicalTrials.gov Identifier: NCT04432324. Last updated on October 12, 2020. Accessed on December 09, 2020.

  104. https://www.clinicaltrials.gov/ct2/show/NCT04480424?term=IVIG&cond=Corona+Virus+Infection&draw=2&rank=3 ClinicalTrials.gov Identifier: NCT04480424. Last updated on November 24, 2020. Accessed on December 10, 2020.

  105. https://www.clinicaltrials.gov/ct2/show/NCT04521309?term=IVIG&cond=Corona+Virus+Infection&draw=2&rank=4 ClinicalTrials.gov Identifier: NCT04521309. Last updated on November 27, 2020. Accessed on December 10, 2020 https://www.clinicaltrials.gov/ct2/show/NCT04546581?term=IVIG&cond=Corona+Virus+Infection&phase=2&draw=2&rank=1 ClinicalTrials.gov Identifier: NCT04546581. Last updated on December 09, 2020. Accessed on December 10, 2020.

  106. Bergeron-Lafaurie A, Azoulay E, Peffault de Latour R, Assistance Publique - Hôpitaux de Paris. CORIMUNO19-ECU: Trial Evaluating Efficacy and Safety of Eculizumab (Soliris) in Patients With COVID19 Infection, Nested in the CORIMUNO-19 Cohort (CORIMUNO19- ECU). Available at: https://clinicaltrials.gov/ct2/show/NCT04346797 ClinicalTrials.gov Identifier: NCT04346797 Last updated on April 27, 2020 Accessed on December 07, 2020.

  107. Administration of Intravenous Vitamin C in Novel Coronavirus Infection (COVID19) and Decreased Oxygenation - Full Text View - ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT04357782. Last updated on September 18, 2020. Accessed on December 10, 2020.

    Google Scholar 

  108. Paniri Alireza, Haleh Akhavan-Niaki. Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat COVID19: role of lncRNAs in cytokine storm modulation. Life Sci. 2020;118114.

    Google Scholar 

  109. Zhang Wen et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID19): the experience of clinical immunologists from China. Clin Immunol. 2020;108393.

    Google Scholar 

  110. Lin L et al. An NLRP3 inflammasome-triggered cytokine storm contributes to streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog. 2019;15.

    Google Scholar 

  111. Chen Guang et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5).

    Google Scholar 

  112. Pedersen Savannah F, Ya-Chi Ho. SARS CoV2: a storm is raging. J Clin Invest. 2020;130(5).

    Google Scholar 

  113. Chen C et al. Thalidomide combined with low-dose glucocorticoid in the treatment of COVID19 Pneumonia. 1–6 (2020). Preprints.

    Google Scholar 

  114. Nabirotchkin S, Peluffo AE, Bouaziz J, Cohen D. Focusing on the Unfolded Protein Response and Autophagy Related Pathways to Reposition Common Approved Drugs against COVID19. Preprints 2020, 2020030302. doi: https://doi.org/10.20944/preprints202003.0302.v1.

  115. Saeedi-Boroujeni A, Mahmoudian-Sani MR, Nashibi R, Houshmandfar S, Tahmaseby Gandomkari S, Khodadadi A. Tranilast: a potential anti-Inflammatory and NLRP3 inflammasome inhibitor drug for COVID19. Immunoph Immunotoxic. 2021;1–12.

    Google Scholar 

  116. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Din CT, Boffini N, Tomelleri A. Interleukin-1 blockade with high-dose anakinra in patients with COVID19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumat. 2020;2(6):e325–31.

    Article  Google Scholar 

  117. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, Kamarulzaman A, French MA, Crowe SM. Aberrant inflammasome activation characterizes tuberculosis-associated immune reconstitution inflammatory syndrome. J Immunol. 2016;196(10):4052–63.

    Article  CAS  PubMed  Google Scholar 

  118. Abderrazak A, Couchie D, Mahmood DFD, Elhage R, Vindis C, Laffargue M, Matéo V, Büchele B, Ayala MR, El Gaafary M, Syrovets T. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2. Ki mice fed a high-fat diet. Circulation. 2015;131(12):1061–70.

    Google Scholar 

  119. Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID19. Front Immun. 2020;11:1518.

    Google Scholar 

  120. Li B, Liu Y, Hu T, Zhang Y, Zhang C, Li T, Wang C, Dong Z, Novakovic VA, Hu T, Shi J. Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2019;145:1695–707.

    Article  CAS  PubMed  Google Scholar 

  121. Brinkmann Volker et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Google Scholar 

  122. Narasaraju Teluguakula et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 2011;179(1):199–210.

    Google Scholar 

  123. Fuchs Tobias A et al. Extracellular DNA traps promote thrombosis. Proc Nat Acad Sci. 2010;107(36):15880–5.

    Google Scholar 

  124. Massberg Steffen et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96.

    Google Scholar 

  125. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair CN, Weber A, Barnes BJ, Egeblad M, Woods RJ, Kanthi Y, Knight JS. Neutrophil extracellular traps in COVID19. JCI Insight. 2020. https://doi.org/10.1172/jci.insig ht.138999.

  126. Nakazawa F, Kannemeier C, Shibamiya A, Song Y, Tzima E, Schubert U, Koyama T, Niepmann M, Trusheim H, Engelmann B, Preissner KT. Extracellular RNA is a natural cofactor for the (auto-)activation of factor VII-activating protease (FSAP). Biochem J. 2005;385:831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res. 2017;123:146–56.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang G, Zhang X, Huang H, Ji Y, Li D, Jiang W. Saquinavir plus methylprednisolone ameliorates experimental acute lung injury. Brazil J Med Biol Res. 2018;51(10).

    Google Scholar 

  129. Uozumi R, Iguchi R, Masuda S, Nishibata Y, Nakazawa D, Tomaru U, Ishizu A. Pharmaceutical immunoglobulins reduce neutrophil extracellular trap formation and ameliorate the development of MPO-ANCA-associated vasculitis. Mod Rheumat. 2019.

    Google Scholar 

  130. Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID19 treatment. Med Inflam. 2020.

    Google Scholar 

  131. ClinicalTrials.gov. CoViD19: Possible Role of Neutrophil Extracellular Traps (NETSINCOVID) Identifier: NCT04412382. Last updated June 02, 2020.

    Google Scholar 

  132. Delaveris CS, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Stanford COVID19 Biobank, Blish CA, Bertozzi CR. Synthetic Siglec-9 agonists inhibit neutrophil activation associated with COVID19. ACS Cent Sci. 2021;7(4):650–7.

    Google Scholar 

  133. Tang Ning et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9.

    Google Scholar 

  134. Connors JM, Levy JH. COVID19 and its implications for thrombosis and anticoagulation. Blood J Am Soc Hematol. 2020;135(23):2033–40.

    CAS  Google Scholar 

  135. Cuker A, Tseng EK, Nieuwlaat R, Angchaisuksiri P, Blair C, Dane K, Davila J, DeSancho MT, Diuguid D, Griffin DO, Kahn SR. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID19. Blood Adv. 2021;5(3):872–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: do heparins have direct anti-inflammatory effects? Thromb Haemost. 2017;117(03):437–44.

    Article  PubMed  Google Scholar 

  137. Mycroft-West CJ, Su D, Elli S, Li Y, Guimond SE, Miller GJ, Turnbull JE, Yates EA, Guerrini M, Fernig DG, de Lima MA. The 2019 coronavirus (SARS CoV2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. BioRxiv. 2020.

    Google Scholar 

  138. Mummery RS, Rider CC. Characterization of the heparin-binding properties of IL-6. J Immunol. 2000;165(10):5671–9.

    Article  CAS  PubMed  Google Scholar 

  139. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094–9. https://doi.org/10.1111/jth.14817.

    Article  CAS  PubMed  Google Scholar 

  140. URL: https://www.clinicaltrials.gov. Unique identifier: NCT03712228.

  141. Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood. 2018;131(17):1903–9.

    Article  CAS  PubMed  Google Scholar 

  142. Ouyang Y, Wang Y, Liu B, Ma X, Ding R. Effects of antiplatelet therapy on the mortality rate of patients with sepsis: a meta-analysis. J Crit Care. 2019;50:162–8.

    Article  CAS  PubMed  Google Scholar 

  143. Wang Y, Ouyang Y, Liu B, Ma X, Ding R. Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thromb Res. 2018;166:28–36.

    Article  CAS  PubMed  Google Scholar 

  144. Wang L, Li H, Gu X, Wang Z, Liu S, Chen L. Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS One. 2016;11(5):e0154754.

    Google Scholar 

  145. Liu Xiaoyan et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID19. Acta Pharmaceutica Sinica B. 2020.

    Google Scholar 

  146. Whyte Claire S et al. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID‐19. J Thromb Haemost. 2020.

    Google Scholar 

  147. Asakura H, Ogawa H. Potential of heparin and nafamostat combination therapy for COVID-19. J Thromb Haemost. 2020;18(6):1521–2.

    Article  CAS  PubMed  Google Scholar 

  148. https://www.clinicaltrials.gov/ct2/show/NCT04352400?term=NCT04352400&draw=2&rank=1. NCT04352400. Last updated on Apr 20 2020, accessed on December 07, 2020.

  149. Russo V, Di Maio M, Attena E, Silverio A, Scudiero F, Celentani D, Lodigiani C, Di Micco P. Clinical impact of pre-admission antithrombotic therapy in hospitalized patients with COVID19: a multicenter observational study. Pharmacol Res. 2020;159:104965.

    Google Scholar 

  150. Parker Edward PK, Madhumita Shrotri, Beate Kampmann. Keeping track of the SARS CoV2 vaccine pipeline. Nat Rev Immunol. 2020;20(11):650.

    Google Scholar 

  151. COVID19 vaccine tracker. London School of Hygiene and Tropical Medicine. https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/ Accessed on December 07, 2020

  152. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-achieve-first-authorization-world.

  153. NEWS/ Pfizer and BioNTech Achieve First Authorization in the World for a Vaccine to Combat COVID19. PFIZER AND BIONTECH ACHIEVE FIRST AUTHORIZATION IN THE WORLD FOR A VACCINE TO COMBAT COVID19 Published on December 02, 2020. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-achieve-first-authorization-world. Accessed on December 07, 2020.

  154. Moderna’s COVID19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study. Moderna. Published on November 16, 2020. https://investors.modernatx.com/news-releases/news-release-details/modernas-CoViD19-vaccine-candidate-meets-its-primary-efficacy. Accessed on December 07 2020.

  155. Dose-Confirmation Study to Evaluate the Safety, Reactogenicity, and Immunogenicity of mRNA-1273 COVID19 Vaccine in Adults Aged 18 Years and Older. https://www.clinicaltrials.gov/ct2/results?cond=&term=NCT04405076&cntry=&state=&city=&dist= Last updated on July 10, 2020. ClinicalTrials.gov number, NCT04405076 Accessed on December 07, 2020.

  156. Jackson Lisa A et al. An mRNA vaccine against SARS CoV2—preliminary report. New England J Med. 2020;383(20):1920–31.

    Google Scholar 

  157. Folegatti Pedro M et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS CoV2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;396(10249):467–78.

    Google Scholar 

  158. AZD1222 vaccine met primary efficacy endpoint in preventing COVID19. Published on 23 November 2020. https://www.astrazeneca.com/media-centre/press-releases/2020/azd1222hlr.html Accessed on December 07 2020.

  159. THE FIRST INTERIM DATA ANALYSIS OF THE SPUTNIK V VACCINE AGAINST COVID19 PHASE III CLINICAL TRIALS IN THE RUSSIAN FEDERATION DEMONSTRATED 92% EFFICACY. Moscow, 11.11.2020. https://sputnikvaccine.com/newsroom/pressreleases/the-first-interim-data-analysis-of-the-sputnik-v-vaccine-against-CoViD19-phase-iii-clinical-trials-/ Accessed on December 07 2020.

  160. Health News. Reuters. Published on June 29 2020. https://uk.reuters.com/article/us-health-coronavirus-china-vaccine/cansinos-CoViD19-vaccine-candidate-approved-for-military-use-in-china-idUKKBN2400DZ Accessed on December 07, 2020.

  161. Zhu Feng-Cai et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet. 2020;396(10249):479–88.

    Google Scholar 

  162. World Health Organization. Therapeutics and COVID19: living guideline, 20 November 2020. No. WHO/2019-nCov/remdesivir/2020.1. World Health Organization, 2020.

    Google Scholar 

  163. Feuillet Vincent, Bruno Canard, Alain Trautmann. Combining antivirals and immunomodulators to fight COVID19. Trends in Immunology. 2020.

    Google Scholar 

  164. Hung IF, Lung KC, Tso EY et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–704. https://doi.org/10.1016/S0140-6736(20)31042–4.

    Google Scholar 

  165. De Stefano Ludovico et al. A “Window of Therapeutic Opportunity” for Anti-Cytokine therapy in patients with coronavirus disease 2019. Front Immunol. 2020;11:2645.

    Google Scholar 

  166. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID19 (idsociety.org) Published by IDSA on 4/11/2020. Last updated, 12/2/2020 Accessed December 07, 2020.

    Google Scholar 

  167. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID19) Updated November 03, 2020 https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html Accessed December 07, 2020.

  168. Clinical management of COVID19 Interim guidance 27 May 2020 COVID19: Clinical care https://www.who.int/publications/i/item/clinical-management-of-CoViD19. Last accessed December 07, 2020.

  169. Coronavirus Disease 2019 (COVID19) Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/ Last Updated: July 17, 2020 Accessed December 07, 2020.

  170. Moderna’s COVID19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study. Moderna. Published on November 16, 2020. https://investors.modernatx.com/news-releases/news-release-details/modernas-CoViD19-vaccine-candidate-meets-its-primary-efficacy Accessed on December 07 2020.

  171. O’Callaghan Kevin P, Allison M Blatz, Paul A Offit. Developing a SARS CoV2 vaccine at warp speed. Jama. 2020.

    Google Scholar 

  172. Bian Huijie et al. Meplazumab treats COVID19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. MedRxiv. 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umair Mallick .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, U. (2022). Treatment Options in CoViD19. In: Cardiovascular Complications of COVID-19. Springer, Cham. https://doi.org/10.1007/978-3-030-90065-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90065-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90064-9

  • Online ISBN: 978-3-030-90065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics