Skip to main content

Progress on Lanthanide Ion-Activated Inorganic Hybrid Phosphors: Properties and Applications

  • Chapter
  • First Online:
Hybrid Phosphor Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 552 Accesses

Abstract

The exploration of multifunctional platforms for diverse applications has gained tremendous advancement towards the designing and engineering of numerous versatile materials with many functions combined into nanostructured hybrid systems. Such materials combine the benefits of different components to improve the efficiency, reliability, cost-efficiency, and scalability of the hybrid system. Trivalent lanthanide ion (Ln3+)-activated hybrid phosphors are important for designing new multifunctional materials with modulated optical and magnetic properties. Thus, their studies open up new directions in material sciences and related technologies. This chapter presents a broad overview of the recently investigated various Ln3+-based inorganic hybrid materials. It covers the hybrids of Ln3+-doped inorganic phosphors, including oxides, fluorides, phosphates, vanadates, sulfides, with materials such as (a) semiconductors (TiO2/ZnO), (b) magnetic nanoparticles (Fe3O4), (c) metal/plasmonic nanoparticles (Au/Ag), (d) graphene and its derivatives, (e) quantum dots, (f) polymers, and others. We will present the study of these materials for their modulated luminescence efficiency and respective advantages in the applications of sensing, optical telecommunication, energy harvesting, multimodal imaging, biomedicine, etc. Furthermore, this chapter will also focus on the synthesis methods and approaches, including surface functionalization and modification, core–shell processing, controlled assembly, and the relationship between the composition, structure, and properties. We anticipate that a fusion of distinctive structural aspects and integrated functions will compel researchers to create smart hybrid materials and exploit this opportunity in all three realms of science: physics, chemistry, and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werts, M.H.V.: Making sense of lanthanide luminescence. Sci. Prog. 88, 101–131 (2005). https://doi.org/10.3184/003685005783238435

    Article  CAS  Google Scholar 

  2. Casanova, D., Giaume, D., Beaurepaire, E., Gacoin, T., Boilot, J.-P., Alexandrou, A.: Optical in situ size determination of single lanthanide-ion doped oxide nanoparticles. Appl. Phys. Lett. 89, 253103 (2006). https://doi.org/10.1063/1.2405871

    Article  CAS  Google Scholar 

  3. Wang, Y., Liu, Y., Xiao, Q., Zhu, H., Li, R., Chen, X.: Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties. Nanoscale 3, 3164 (2011). https://doi.org/10.1039/c1nr10341e

    Article  CAS  Google Scholar 

  4. Sun, C., Carpenter, C., Pratx, G., Xing, L.: Facile Synthesis of amine-functionalized Eu3+-doped La(OH)3 nanophosphors for bioimaging. Nanoscale Res. Lett. 7, 1–7 (2010). https://doi.org/10.1007/s11671-010-9768-x

    Article  CAS  Google Scholar 

  5. Heine, J., Müller-Buschbaum, K.: Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 42, 9232 (2013). https://doi.org/10.1039/c3cs60232j

  6. Fan, Y., Wang, P., Lu, Y., Wang, R., Zhou, L., Zheng, X., Li, X., Piper, J.A., Zhang, F.: Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018). https://doi.org/10.1038/s41565-018-0221-0

    Article  CAS  Google Scholar 

  7. Wang, G., Peng, Q., Li, Y.: Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332 (2011). https://doi.org/10.1021/ar100129p

    Article  CAS  Google Scholar 

  8. Zeng, S., Ren, G., Xu, C., Yang, Q.: High uniformity and monodispersity of sodium rare-earth fluoride nanocrystals: controllable synthesis, shape evolution and optical properties. Cryst. Eng. Comm. 13, 1384–1390 (2011). https://doi.org/10.1039/C0CE00325E

    Article  CAS  Google Scholar 

  9. Padhye, P., Alam, A., Ghorai, S., Chattopadhyay, S., Poddar, P.: Doxorubicin-conjugated β-NaYF4: Gd3+/Tb3+ multifunctional, phosphor nanorods: a multi-modal, luminescent, magnetic probe for simultaneous optical and magnetic resonance imaging and an excellent pH-triggered anti-cancer drug delivery nanovehicle. Nanoscale 7, 19501–19518 (2015). https://doi.org/10.1039/C5NR04473A

    Article  CAS  Google Scholar 

  10. Zhang, J., Li, B., Zhang, L., Jiang, H.: An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem. Commun. 48, 4860 (2012). https://doi.org/10.1039/c2cc31642k

    Article  CAS  Google Scholar 

  11. Malik, M., Padhye, P., Poddar, P.: Downconversion luminescence-based nanosensor for label-free detection of explosives. ACS Omega 4, 4259–4268 (2019). https://doi.org/10.1021/acsomega.8b03491

    Article  CAS  Google Scholar 

  12. Meruga, J.M., Cross, W.M., Stanley May, P., Luu, Q., Crawford, G.A., Kellar, J.J.: Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology 23, 395201 (2012). https://doi.org/10.1088/0957-4484/23/39/395201

    Article  CAS  Google Scholar 

  13. Sudarsan, V., van Veggel, F.C.J.M., Herring, R.A., Raudsepp, M.: Surface Eu3+ ions are different than “bulk” Eu3+ ions in crystalline doped LaF3 nanoparticles. J. Mater. Chem. 15, 1332–1342 (2005). https://doi.org/10.1039/B413436B

  14. Artiles, M.S., Rout, C.S., Fisher, T.S.: Graphene-based hybrid materials and devices for biosensing. Adv. Drug. Deliv. Rev. 63, 1352–1360 (2011). https://doi.org/10.1016/j.addr.2011.07.005

    Article  CAS  Google Scholar 

  15. Huang, X., Tan, C., Yin, Z., Zhang, H.: 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014). https://doi.org/10.1002/adma.201304964

    Article  CAS  Google Scholar 

  16. Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015). https://doi.org/10.1016/j.rser.2014.11.023

    Article  CAS  Google Scholar 

  17. Li, W., Wang, Z., Deschler, F., Gao, S., Friend, R.H., Cheetham, A.K.: Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017). https://doi.org/10.1038/natrevmats.2016.99

    Article  Google Scholar 

  18. Li, X., Zhao, D., Zhang, F.: Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications. Theranostics 3, 292–305 (2013). https://doi.org/10.7150/thno.5289

    Article  CAS  Google Scholar 

  19. Saveleva, M.S., Eftekhari, K., Abalymov, A., Douglas, T.E.L., Volodkin, D., Parakhonskiy, B.V., Skirtach, A.G.: Hierarchy of hybrid materials—the place of inorganics-in-organics in it, their composition and applications. Front. Chem. 7, 1–21 (2019). https://doi.org/10.3389/fchem.2019.00179

    Article  CAS  Google Scholar 

  20. Chen, G., Yu, Y., Wu, X., Wang, G., Ren, J., Zhao, Y.: Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv. Funct. Mater. 28, 1801386 (2018). https://doi.org/10.1002/adfm.201801386

    Article  CAS  Google Scholar 

  21. Jian, Y., Hu, W., Zhao, Z., Cheng, P., Haick, H., Yao, M., Wu, W.: Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro. Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5

    Article  CAS  Google Scholar 

  22. Feng, W., Han, C., Li, F.: Upconversion-nanophosphor-based functional nanocomposites. Adv. Mater. 25, 5287–5303 (2013). https://doi.org/10.1002/adma.201301946

    Article  CAS  Google Scholar 

  23. Tian, G., Zhang, X., Gu, Z., Zhao, Y.: Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mater. 27, 7692–7712 (2015). https://doi.org/10.1002/adma.201503280

    Article  CAS  Google Scholar 

  24. Wen, S., Zhou, J., Schuck, P.J., Suh, Y.D., Schmidt, T.W., Jin, D.: Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 13, 828–838 (2019). https://doi.org/10.1038/s41566-019-0528-x

    Article  CAS  Google Scholar 

  25. Bai, G., Tsang, M.-K., Hao, J.: Luminescent ions in advanced composite materials for multifunctional applications. Adv. Funct. Mater. 26, 6330–6350 (2016). https://doi.org/10.1002/adfm.201602142

    Article  CAS  Google Scholar 

  26. Wu, X., Yin, S., Dong, Q., Sato, T.: Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance. Appl. Catal. B Environ. 156–157, 257–264 (2014). https://doi.org/10.1016/j.apcatb.2014.03.028

    Article  CAS  Google Scholar 

  27. Li, S.-L., Jiang, K.-J., Shao, K.-F., Yang, L.-M.: Novel organic dyes for efficient dye-sensitized solar cells. Chem. Commun. 2, 2792 (2006). https://doi.org/10.1039/b603706b

    Article  CAS  Google Scholar 

  28. Burke, A., Schmidt-Mende, L., Ito, S., Grätzel, M.: A novel blue dye for near-IR “dye-sensitised” solar cell applications. Chem. Commun. 234–236 (2007). https://doi.org/10.1039/B609266G

  29. McDonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J.D., Levina, L., Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005). https://doi.org/10.1038/nmat1299

    Article  CAS  Google Scholar 

  30. Shan, G.-B., Demopoulos, G.P.: Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010). https://doi.org/10.1002/adma.201001816

    Article  CAS  Google Scholar 

  31. Wang, F., Liu, X.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009). https://doi.org/10.1039/b809132n

    Article  CAS  Google Scholar 

  32. Shan, G.-B., Assaaoudi, H., Demopoulos, G.P.: Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF4: Er3+/Yb3+ nanoplatelets. ACS Appl. Mater. Interfaces 3, 3239–3243 (2011). https://doi.org/10.1021/am200537e

    Article  CAS  Google Scholar 

  33. Liang, L., Liu, Y., Bu, C., Guo, K., Sun, W., Huang, N., Peng, T., Sebo, B., Pan, M., Liu, W., Guo, S., Zhao, X.-Z.: Highly uniform, bifunctional core/double-shell-Structured β-NaYF4: Er3+, Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013). https://doi.org/10.1002/adma.201204847

    Article  CAS  Google Scholar 

  34. Liang, L., Liu, Y., Zhao, X.-Z.: Double-shell β-NaYF4: Yb3+, Er3+/SiO2/TiO2 submicroplates as a scattering and upconverting layer for efficient dye-sensitized solar cells. Chem. Commun. 49, 3958 (2013). https://doi.org/10.1039/c3cc41252k

    Article  CAS  Google Scholar 

  35. Padhye, P., Sadhu, S., Malik, M., Poddar, P.: A broad spectrum photon responsive, paramagnetic β-NaGdF4: Yb3+, Er3+-mesoporous anatase titania nanocomposite. RSC Adv. 6, 53504–53518 (2016). https://doi.org/10.1039/C6RA06813H

    Article  CAS  Google Scholar 

  36. Yu, J., Yang, Y., Fan, R., Wang, P., Dong, Y.: Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF3-Ho/TiO2 nanoheterostructures. Nanoscale 8, 4173–4180 (2016). https://doi.org/10.1039/C5NR08319B

    Article  CAS  Google Scholar 

  37. Liao, W., Zheng, D., Tian, J., Lin, Z.: Dual-functional semiconductor-decorated upconversion hollow spheres for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 3, 23360–23367 (2015). https://doi.org/10.1039/C5TA06238A

    Article  CAS  Google Scholar 

  38. Ramasamy, P., Kim, J.: Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells. Chem. Commun. 50, 879–881 (2014). https://doi.org/10.1039/C3CC47290F

    Article  CAS  Google Scholar 

  39. Meng, F., Luo, Y., Zhou, Y., Zhang, J., Zheng, Y., Cao, G., Tao, X.: Integrated plasmonic and upconversion starlike Y2O3: Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells. J. Power Sources 316, 207–214 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.032

    Article  CAS  Google Scholar 

  40. Luoshan, M., Bai, L., Bu, C., Liu, X., Zhu, Y., Guo, K., Jiang, R., Li, M., Zhao, X.: Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4: Yb3+, Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells. J. Power Sources 307, 468–473 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.028

    Article  CAS  Google Scholar 

  41. Dyck, N.C., Demopoulos, G.P.: Integration of upconverting β-NaYF4: Yb3+, Er3+ @TiO2 composites as light harvesting layers in dye-sensitized solar cells. RSC Adv. 4, 52694–52701 (2014). https://doi.org/10.1039/C4RA08775E

    Article  CAS  Google Scholar 

  42. Du, P., Lim, J.H., Leem, J.W., Cha, S.M., Yu, J.S.: Enhanced photovoltaic performance of dye-sensitized solar cells by efficient near-infrared sunlight harvesting using upconverting Y2O3: Er3+/Yb3+ phosphor nanoparticles. Nanoscale Res. Lett. 10, 321 (2015). https://doi.org/10.1186/s11671-015-1030-0

    Article  CAS  Google Scholar 

  43. Chander, N., Khan, A.F., Komarala, V.K., Chawla, S., Dutta, V.: Enhancement of dye sensitized solar cell efficiency via incorporation of upconverting phosphor nanoparticles as spectral converters. Prog. Photovoltaics Res. Appl. 24, 692–703 (2016). https://doi.org/10.1002/pip.2723

    Article  CAS  Google Scholar 

  44. Rajeswari, R., Susmitha, K., Jayasankar, C.K., Raghavender, M., Giribabu, L.: Enhanced light harvesting with novel photon upconverted Y2CaZnO5: Er3+/Yb3+ nanophosphors for dye sensitized solar cells. Sol. Energy 157, 956–965 (2017). https://doi.org/10.1016/j.solener.2017.09.018

    Article  CAS  Google Scholar 

  45. Cai, W., Zhang, Z., Jin, Y., Lv, Y., Wang, L., Chen, K., Zhou, X.: Application of TiO2 hollow microspheres incorporated with up-conversion NaYF4: Yb3+, Er3+ nanoparticles and commercial available carbon counter electrodes in dye-sensitized solar cells. Sol. Energy 188, 441–449 (2019). https://doi.org/10.1016/j.solener.2019.05.081

    Article  CAS  Google Scholar 

  46. Mao, X., Yu, J., Xu, J., Wan, L., Yang, Y., Lin, H., Xu, J., Zhou, R.: Commercial upconversion phosphors with high light harvesting: a superior candidate for high-performance dye-sensitized solar cells. Phys. Status Solid. 216, 1900382 (2019). https://doi.org/10.1002/pssa.201900382

    Article  CAS  Google Scholar 

  47. Tadge, P., Yadav, R.S., Vishwakarma, P.K., Rai, S.B., Chen, T.-M., Sapra, S., Ray, S.: Enhanced photovoltaic performance of Y2O3: Ho3+/Yb3+ upconversion nanophosphor based DSSC and investigation of color tunability in Ho3+/Tm3+/Yb3+ tridoped Y2O3. J. Alloys Compd. 821, 153230 (2020). https://doi.org/10.1016/j.jallcom.2019.153230

    Article  CAS  Google Scholar 

  48. Qin, W., Zhang, D., Zhao, D., Wang, L., Zheng, K.: Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. 46, 2304 (2010). https://doi.org/10.1039/b924052g

    Article  CAS  Google Scholar 

  49. Padhye, P., Poddar, P.: Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-ion-doped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. J. Mater. Chem. A 2, 19189–19200 (2014). https://doi.org/10.1039/C4TA04274C

    Article  CAS  Google Scholar 

  50. Guo, X., Song, W., Chen, C., Di, W., Qin, W.: Near-infrared photocatalysis of β-NaYF4: Yb3+, Tm3+@ZnO composites. Phys. Chem. Chem. Phys. 15, 14681 (2013). https://doi.org/10.1039/c3cp52248b

    Article  CAS  Google Scholar 

  51. Wu, X., Yin, S., Dong, Q., Liu, B., Wang, Y., Sekino, T., Lee, S.W., Sato, T.: UV, visible and near-infrared lights induced NOx destruction activity of (Yb, Er)-NaYF4/C-TiO2 composite. Sci. Rep. 3, 2918 (2013). https://doi.org/10.1038/srep02918

    Article  Google Scholar 

  52. Tang, Y., Di, W., Zhai, X., Yang, R., Qin, W.: NIR-responsive photocatalytic activity and mechanism of NaYF4: Yb, Tm@TiO2 core-shell nanoparticles. ACS Catal. 3, 405–412 (2013). https://doi.org/10.1021/cs300808r

    Article  CAS  Google Scholar 

  53. Wang, C., Song, K., Feng, Y., Yin, D., Ouyang, J., Liu, B., Cao, X., Zhang, L., Han, Y., Wu, M.: Preparation of NaLuF4: Gd, Yb, Tm–TiO2 nanocomposite with high catalytic activity for solar light assisted photocatalytic degradation of dyes and wastewater. RSC Adv. 4, 39118–39125 (2014). https://doi.org/10.1039/C4RA05575F

    Article  CAS  Google Scholar 

  54. Yin, D., Zhang, L., Cao, X., Tang, J., Huang, W., Han, Y., Liu, Y., Zhang, T., Wu, M.: Improving photocatalytic activity by combining upconversion nanocrystals and Mo-doping: a case study on β-NaLuF4: Gd, Yb, Tm@SiO2@TiO2: Mo. RSC Adv. 5, 87251–87258 (2015). https://doi.org/10.1039/C5RA12852H

    Article  CAS  Google Scholar 

  55. Guo, X., Di, W., Chen, C., Liu, C., Wang, X., Qin, W.: Enhanced near-infrared photocatalysis of NaYF4: Yb, Tm/CdS/TiO2 composites. Dalt. Trans. 43, 1048–1054 (2014). https://doi.org/10.1039/C3DT52288A

    Article  CAS  Google Scholar 

  56. Tou, M., Mei, Y., Bai, S., Luo, Z., Zhang, Y., Li, Z.: Depositing CdS nanoclusters on carbon-modified NaYF4: Yb,Tm upconversion nanocrystals for NIR-light enhanced photocatalysis. Nanoscale 8, 553–562 (2016). https://doi.org/10.1039/C5NR06806A

    Article  CAS  Google Scholar 

  57. Zhang, Y., Hong, Z.: Synthesis of lanthanide-doped NaYF4@TiO2 core-shell composites with highly crystalline and tunable TiO2 shells under mild conditions and their upconversion-based photocatalysis. Nanoscale 5, 8930 (2013). https://doi.org/10.1039/c3nr03051b

    Article  CAS  Google Scholar 

  58. Wu, X., Zhang, K., Zhang, G., Yin, S.: Facile preparation of BiOX (X = Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: Oxygen vacancy effect and near infrared light responsive mechanism. Chem. Eng. J. 325, 59–70 (2017). https://doi.org/10.1016/j.cej.2017.05.044

    Article  CAS  Google Scholar 

  59. Kumar, A., Reddy, K.L., Kumar, S., Kumar, A., Sharma, V., Krishnan, V.: Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum. ACS Appl. Mater. Interfaces 10, 15565–15581 (2018). https://doi.org/10.1021/acsami.7b17822

    Article  CAS  Google Scholar 

  60. Reddy, K.L., Kumar, S., Kumar, A., Krishnan, V.: Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. J. Hazard Mater. 367, 694–705 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.004

    Article  CAS  Google Scholar 

  61. Yin, L., Gao, J., Wang, J., Luan, X., Kang, P., Li, Y., Li, K., Zhang, X.: Synthesis of Er3+: Y3Al5O12 and its effects on the solar light photocatalytic activity of TiO2-ZrO2 composite. Res. Chem. Intermed. 38, 523–536 (2012). https://doi.org/10.1007/s11164-011-0368-x

    Article  CAS  Google Scholar 

  62. Gonell, F., Haro, M., Sánchez, R.S., Negro, P., Mora-Seró, I., Bisquert, J., Julián-López, B., Gimenez, S.: Photon up-conversion with lanthanide-doped oxide particles for solar H2 generation. J. Phys. Chem. C 118, 11279–11284 (2014). https://doi.org/10.1021/jp503743e

    Article  CAS  Google Scholar 

  63. Liu, X., Pan, L., Li, J., Yu, K., Sun, Z., Sun, C.Q.: Light down-converting characteristics of ZnO-Y2O2S: Eu3+ for visible light photocatalysis. J. Colloid Interface Sci. 404, 150–154 (2013). https://doi.org/10.1016/j.jcis.2013.04.047

    Article  CAS  Google Scholar 

  64. Lucky, S.S., Muhammad Idris, N., Li, Z., Huang, K., Soo, K.C., Zhang, Y.: Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano 9, 191–205 (2015). https://doi.org/10.1021/nn503450t

    Article  CAS  Google Scholar 

  65. Tong, R., Lin, H., Chen, Y., An, N., Wang, G., Pan, X., Qu, F.: Near-infrared mediated chemo/photodynamic synergistic therapy with DOX-UCNPs@mSiO2/TiO2-TC nanocomposite. Mater. Sci. Eng. C 78, 998–1005 (2017). https://doi.org/10.1016/j.msec.2017.04.112

    Article  CAS  Google Scholar 

  66. Xu, Q.C., Zhang, Y., Tan, M.J., Liu, Y., Yuan, S., Choong, C., Tan, N.S., Tan, T.T.Y.: Anti-cAngptl4 Ab-conjugated N-TiO2/NaYF4: Yb, Tm nanocomposite for near infrared-triggered drug release and enhanced targeted cancer cell ablation. Adv. Healthcare Mater. 1, 470–474 (2012). https://doi.org/10.1002/adhm.201200055

    Article  CAS  Google Scholar 

  67. Hou, Z., Zhang, Y., Deng, K., Chen, Y., Li, X., Deng, X., Cheng, Z., Lian, H., Li, C., Lin, J.: UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano 9, 2584–2599 (2015). https://doi.org/10.1021/nn506107c

    Article  CAS  Google Scholar 

  68. Chen, Y., Lin, H., Tong, R., An, N., Qu, F.: Near-infrared light-mediated DOX-UCNPs@mHTiO2 nanocomposite for chemo/photodynamic therapy and imaging. Colloids Surfaces B Biointerfaces 154, 429–437 (2017). https://doi.org/10.1016/j.colsurfb.2017.03.026

    Article  CAS  Google Scholar 

  69. Penet, M.-F., Mikhaylova, M., Li, C., Krishnamachary, B., Glunde, K., Pathak, A.P., Bhujwalla, Z.M.: Applications of molecular MRI and optical imaging in cancer. Future Med. Chem. 2, 975–988 (2010). https://doi.org/10.4155/fmc.10.25

    Article  CAS  Google Scholar 

  70. Zhang, Y., Pan, S., Teng, X., Luo, Y., Li, G.: Bifunctional magnetic - Luminescent nanocomposites: Y2O3/Tb nanorods on the surface of iron oxide/silica core-shell nanostructures. J. Phys. Chem. C 112, 9623–9626 (2008). https://doi.org/10.1021/jp8015326

    Article  CAS  Google Scholar 

  71. Gowd, G.S., Patra, M.K., Mathew, M., Shukla, A., Songara, S., Vadera, S.R., Kumar, N.: Synthesis of Fe3O4@Y2O3: Eu3+ core-shell multifunctional nanoparticles and their magnetic and luminescence properties. Opt. Mater. (Amst.) 35, 1685–1692 (2013). https://doi.org/10.1016/j.optmat.2013.04.029

    Article  CAS  Google Scholar 

  72. Wu, T., Pan, H., Chen, R., Luo, D., Zhang, H., Shen, Y., Lu, B., Huang, J., Li, Y., Wang, L.: Enhanced photoluminescence of Fe3O4@Y2O3: Eu3+ bifunctional nanoparticles by the Gd3+ co-doping. J. Alloys Compd. 666, 507–512 (2016). https://doi.org/10.1016/j.jallcom.2016.01.130

    Article  CAS  Google Scholar 

  73. Yang, P., Quan, Z., Hou, Z., Li, C., Kang, X., Cheng, Z., Lin, J.: A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 30, 4786–4795 (2009). https://doi.org/10.1016/j.biomaterials.2009.05.038

    Article  CAS  Google Scholar 

  74. Singh, L.P., Jadhav, N.V., Sharma, S., Pandey, B.N., Srivastava, S.K., Ningthoujam, R.S.: Hybrid nanomaterials YVO4: Eu/Fe3O4 for optical imaging and hyperthermia in cancer cells. J. Mater. Chem. C 3, 1965–1975 (2015). https://doi.org/10.1039/C4TC02636E

    Article  CAS  Google Scholar 

  75. Lu, H., Yi, G., Zhao, S., Chen, D., Guo, L.-H., Cheng, J.: Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J. Mater. Chem. 14, 1336 (2004). https://doi.org/10.1039/b315103d

    Article  CAS  Google Scholar 

  76. Mi, C., Zhang, J., Gao, H., Wu, X., Wang, M., Wu, Y., Di, Y., Xu, Z., Mao, C., Xu, S.: Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb, Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale 2, 1141 (2010). https://doi.org/10.1039/c0nr00102c

    Article  CAS  Google Scholar 

  77. Shen, J., Sun, L.-D., Zhang, Y.-W., Yan, C.-H.: Superparamagnetic and upconversion emitting Fe3O4/NaYF4: Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem. Commun. 46, 5731 (2010). https://doi.org/10.1039/c0cc00814a

    Article  CAS  Google Scholar 

  78. Liu, D., Zhao, D., Shi, F., Zheng, K., Qin, W.: Superparamagnetic and upconversion luminescent properties of Fe3O4/NaYF4: Yb, Er hetero-submicro-rods. Mater. Lett. 85, 1–3 (2012). https://doi.org/10.1016/j.matlet.2012.06.023

    Article  CAS  Google Scholar 

  79. Zhu, X., Zhou, J., Chen, M., Shi, M., Feng, W., Li, F.: Core-shell Fe3O4@NaLuF4: Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33, 4618–4627 (2012). https://doi.org/10.1016/j.biomaterials.2012.03.007

    Article  CAS  Google Scholar 

  80. Hu, D., Chen, M., Gao, Y., Li, F., Wu, L.: A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4: Yb, Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. J. Mater. Chem. 21, 11276 (2011). https://doi.org/10.1039/c1jm11172h

    Article  CAS  Google Scholar 

  81. Zhong, C., Yang, P., Li, X., Li, C., Wang, D., Gai, S., Lin, J.: Monodisperse bifunctional Fe3O4@NaGdF4: Yb/Er@NaGdF4: Yb/Er core-shell nanoparticles. RSC Adv. 2, 3194 (2012). https://doi.org/10.1039/c2ra20070h

    Article  CAS  Google Scholar 

  82. Cheng, L., Yang, K., Li, Y., Chen, J., Wang, C., Shao, M., Lee, S.-T., Liu, Z.: Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chemie. Int. Ed. 50, 7385–7390 (2011). https://doi.org/10.1002/anie.201101447

    Article  CAS  Google Scholar 

  83. Wang, K., Xiang, Y., Pan, W., Wang, H., Li, N., Tang, B.: Dual-targeted photothermal agents for enhanced cancer therapy. Chem. Sci. 11, 8055–8072 (2020). https://doi.org/10.1039/D0SC03173A

    Article  CAS  Google Scholar 

  84. Runowski, M., Grzyb, T., Lis, S.: Magnetic and luminescent hybrid nanomaterial based on Fe3O4 nanocrystals and GdPO4: Eu3+ nanoneedles. J. Nanoparticle Res. 14, 1188 (2012). https://doi.org/10.1007/s11051-012-1188-7

    Article  CAS  Google Scholar 

  85. Xia, A., Gao, Y., Zhou, J., Li, C., Yang, T., Wu, D., Wu, L., Li, F.: Core–shell NaYF4: Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32, 7200–7208 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.094

    Article  CAS  Google Scholar 

  86. Gai, S., Yang, P., Li, C., Wang, W., Dai, Y., Niu, N., Lin, J.: Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 20, 1166–1172 (2010). https://doi.org/10.1002/adfm.200902274

    Article  CAS  Google Scholar 

  87. Mertens, H., Polman, A.: Plasmon-enhanced erbium luminescence. Appl. Phys. Lett. 89, 211107 (2006). https://doi.org/10.1063/1.2392827

    Article  CAS  Google Scholar 

  88. Da Silva, D.M., Kassab, L.R.P., Lüthi, S.R., De Araújo, C.B., Gomes, A.S.L., Bell, M.J.V.: Frequency upconversion in Er3+ doped PbO-GeO2 glasses containing metallic nanoparticles. Appl. Phys. Lett. 90, 1–4 (2007). https://doi.org/10.1063/1.2679798

    Article  CAS  Google Scholar 

  89. Som, T., Karmakar, B.: Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites. J. Appl. Phys. 105, 013102 (2009). https://doi.org/10.1063/1.3054918

    Article  CAS  Google Scholar 

  90. Zhang, H., Xu, D., Huang, Y., Duan, X.: Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. Chem. Commun. 47, 979–981 (2011). https://doi.org/10.1039/C0CC03566A

    Article  CAS  Google Scholar 

  91. Zhang, H., Li, Y., Ivanov, I.A., Qu, Y., Huang, Y., Duan, X.: Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chemie. Int. Ed. 49, 2865–2868 (2010). https://doi.org/10.1002/anie.200905805

    Article  CAS  Google Scholar 

  92. Feng, W., Sun. L.-D., Yan. C.-H.: Ag nanowires enhanced upconversion emission of NaYF4: Yb,Er nanocrystals via a direct assembly method. Chem. Commun. 4393 (2009). https://doi.org/10.1039/b909164e

  93. Zhang, W., Ding, F., Chou, S.Y.: Large enhancement of upconversion luminescence of NaYF4: Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Mater. 24, OP236–OP241 (2012). https://doi.org/10.1002/adma.201200220

  94. Kannan, P., Rahim, F.A., Teng, X., Chen, R., Sun, H., Huang, L., Kim, D.-H.: Enhanced emission of NaYF4: Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells. RSC Adv. 3, 7718 (2013). https://doi.org/10.1039/c3ra22130j

    Article  CAS  Google Scholar 

  95. Jiang, T., Li, J., Qin, W., Zhou, J.: Greatly enhanced Raman scattering and upconversion luminescence of Au-NaYF4 nanocomposites. J. Lumin. 156, 164–169 (2014). https://doi.org/10.1016/j.jlumin.2014.08.020

    Article  CAS  Google Scholar 

  96. Lu, Y., Chen, X.: Plasmon-enhanced luminescence in Yb3+: Y2O3 thin film and the potential for solar cell photon harvesting. Appl. Phys. Lett. 94, 193110 (2009). https://doi.org/10.1063/1.3133340

    Article  CAS  Google Scholar 

  97. Zhang, F., Braun, G.B., Shi, Y., Zhang, Y., Sun, X., Reich, N.O., Zhao, D., Stucky, G.: Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132, 2850–2851 (2010). https://doi.org/10.1021/ja909108x

    Article  CAS  Google Scholar 

  98. Xu, W., Min, X., Chen, X., Zhu, Y., Zhou, P., Cui, S., Xu, S., Tao, L., Song, H.: Ag-SiO2-Er2O3 nanocomposites: highly effective upconversion luminescence at high power excitation and high temperature. Sci. Rep. 4, 5087 (2015). https://doi.org/10.1038/srep05087

    Article  CAS  Google Scholar 

  99. Li, Z.Q., Chen, S., Li, J.J., Liu, Q.Q., Sun, Z., Wang, Z.B., Huang, S.M.: Plasmon-enhanced upconversion fluorescence in NaYF4: Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells. J. Appl. Phys. 111, 014310 (2012). https://doi.org/10.1063/1.3676258

    Article  CAS  Google Scholar 

  100. Schietinger, S., Aichele, T., Wang, H., Nann, T., Benson, O.: Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals. Nano. Lett. 10, 134–138 (2010). https://doi.org/10.1021/nl903046r

    Article  CAS  Google Scholar 

  101. Liu, N., Qin, W., Qin, G., Jiang, T., Zhao, D.: Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4: Yb,Tm hybrid nanostructures. Chem. Commun. 47, 7671 (2011). https://doi.org/10.1039/c1cc11179e

    Article  CAS  Google Scholar 

  102. Priyam, A., Idris, N.M., Zhang, Y.: Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J. Mater. Chem. 22, 960–965 (2012). https://doi.org/10.1039/C1JM14040J

    Article  CAS  Google Scholar 

  103. Kannan, P., Abdul Rahim, F., Chen, R., Teng, X., Huang, L., Sun, H., Kim, D.-H.: Au nanorod decoration on NaYF4: Yb/Tm nanoparticles for enhanced emission and wavelength-dependent biomolecular sensing. ACS Appl. Mater. Interfaces 5, 3508–3513 (2013). https://doi.org/10.1021/am4007758

    Article  CAS  Google Scholar 

  104. Saboktakin, M., Ye, X., Oh, S.J., Hong, S.-H., Fafarman, A.T., Chettiar, U.K., Engheta, N., Murray, C.B., Kagan, C.R.: Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6, 8758–8766 (2012). https://doi.org/10.1021/nn302466r

    Article  CAS  Google Scholar 

  105. Yuan, P., Lee, Y.H., Gnanasammandhan, M.K., Guan, Z., Zhang, Y., Xu, Q.-H.: Plasmon enhanced upconversion luminescence of NaYF4: Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale 4, 5132 (2012). https://doi.org/10.1039/c2nr31241g

    Article  CAS  Google Scholar 

  106. Chen, X., Zhou, D., Xu, W., Zhu, J., Pan, G., Yin, Z., Wang, H., Zhu, Y., Shaobo, C., Song, H.: Fabrication of Au-Ag nanocage@NaYF4@NaYF4: Yb, Er core-shell hybrid and its tunable upconversion enhancement. Sci. Rep. 7, 41079 (2017). https://doi.org/10.1038/srep41079

    Article  CAS  Google Scholar 

  107. Xu, W., Zhu, Y., Chen, X., Wang, J., Tao, L., Xu, S., Liu, T., Song, H.: A novel strategy for improving upconversion luminescence of NaYF4: Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano. Res. 6, 795–807 (2013). https://doi.org/10.1007/s12274-013-0358-y

    Article  CAS  Google Scholar 

  108. Saboktakin, M., Ye, X., Chettiar, U.K., Engheta, N., Murray, C.B., Kagan, C.R.: Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano 7, 7186–7192 (2013). https://doi.org/10.1021/nn402598e

    Article  CAS  Google Scholar 

  109. Wang, P., Li, Z., Salcedo, W.J., Sun, Z., Huang, S., Brolo, A.G.: Surface plasmon enhanced up-conversion from NaYF4: Yb/Er/Gd nano-rods. Phys. Chem. Chem. Phys. 17, 16170–16177 (2015). https://doi.org/10.1039/C5CP02249E

    Article  CAS  Google Scholar 

  110. Das, A., Mao, C., Cho, S., Kim, K., Park, W.: Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures. Nat. Commun. 9, 4828 (2018). https://doi.org/10.1038/s41467-018-07284-w

    Article  CAS  Google Scholar 

  111. Zhan, S., Xiong, J., Nie, G., Wu, S., Hu, J., Wu, X., Hu, S., Zhang, J., Gao, Y., Liu, Y.: Steady state luminescence enhancement in plasmon coupled core/shell upconversion nanoparticles. Adv. Mater. Interfaces 6, 1802089 (2019). https://doi.org/10.1002/admi.201802089

    Article  CAS  Google Scholar 

  112. Aisaka, T., Fujii, M., Hayashi, S.: Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl. Phys. Lett. 92, 132105 (2008). https://doi.org/10.1063/1.2896303

    Article  CAS  Google Scholar 

  113. Ge, W., Zhang, X.R., Liu, M., Lei, Z.W., Knize, R.J., Lu, Y.: Distance dependence of gold-enhanced upconversion luminescence in Au/SiO2/Y2O3: Yb3+, Er3+ nanoparticles. Theranostics 3, 282–288 (2013). https://doi.org/10.7150/thno.5523

    Article  CAS  Google Scholar 

  114. Tiwari, S.P., Kumar, K., Rai, V.K.: Plasmonic enhancement in upconversion emission of La2O3: Er3+/Yb3+ phosphor via introducing silver metal nanoparticles. Appl. Phys. B 121, 221–228 (2015). https://doi.org/10.1007/s00340-015-6223-9

    Article  CAS  Google Scholar 

  115. Xu, W., Chen, B., Yu, W., Zhu, Y., Liu, T., Xu, S., Min, X., Bai, X., Song, H.: The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO4: Yb3+, Er3+ NPs. Dalt. Trans. 41, 13525 (2012). https://doi.org/10.1039/c2dt31435e

    Article  CAS  Google Scholar 

  116. Liu, S., Chen, G., Ohulchanskyy, T.Y., Swihart, M.T., Prasad, P.N.: Facile synthesis and potential bioimaging applications of hybrid upconverting and plasmonic NaGdF4: Yb3+, Er3+/silica/gold nanoparticles. Theranostics 3, 275–281 (2013). https://doi.org/10.7150/thno.4983

    Article  CAS  Google Scholar 

  117. Dong, B., Xu, S., Sun, J., Bi, S., Li, D., Bai, X., Wang, Y., Wang, L., Song, H.: Multifunctional NaYF4: Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J. Mater. Chem. 21, 6193–6200 (2011). https://doi.org/10.1039/c0jm04498a

    Article  CAS  Google Scholar 

  118. Li, A.-H., Lü, M., Guo, L., Sun, Z.: Enhanced upconversion luminescence of metal-capped NaGd0.3Yb0.7F4: Er submicrometer particles. Small 12, 2092–2098 (2016). https://doi.org/10.1002/smll.201502934

    Article  CAS  Google Scholar 

  119. Zhang, Y., Xu, S., Li, X., Zhang, J., Sun, J., Xia, H., Hua, R., Chen, B.: Fabrication, photothermal conversion and temperature sensing of novel nanoplatform-hybrid nanocomposite of NaYF4: Er3+, Yb3+@NaYF4 and Au nanorods for photothermal therapy. Mater. Res. Bull. 114, 148–155 (2019). https://doi.org/10.1016/j.materresbull.2019.03.003

    Article  CAS  Google Scholar 

  120. Chen, Y., Zhang, B., Liu, G., Zhuang, X., Kang, E.-T.: Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688 (2012). https://doi.org/10.1039/c2cs35043b

    Article  CAS  Google Scholar 

  121. Park, S., Vosguerichian, M., Bao, Z.: A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013). https://doi.org/10.1039/c3nr33560g

    Article  CAS  Google Scholar 

  122. Cheng, Z., Chai, R., Ma, P., Dai, Y., Kang, X., Lian, H., Hou, Z., Li, C., Lin, J.: Multiwalled carbon nanotubes and NaYF4: Yb3+/Er3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging. Langmuir 29, 9573–9580 (2013). https://doi.org/10.1021/la402036p

    Article  CAS  Google Scholar 

  123. Vilela, P., El-Sagheer, A., Millar, T.M., Brown, T., Muskens, O.L., Kanaras, A.G.: Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sens. 2, 52–56 (2017). https://doi.org/10.1021/acssensors.6b00651

    Article  CAS  Google Scholar 

  124. Giust, D., Lucío, M.I., El-Sagheer, A.H., Brown, T., Williams, L.E., Muskens, O.L., Kanaras, A.G.: Graphene oxide-upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops. ACS Nano 12, 6273–6279 (2018). https://doi.org/10.1021/acsnano.8b03261

    Article  CAS  Google Scholar 

  125. Lin, F., Jia, M., Sun, Z., Fu, Z.: Highly sensitive self-referencing thermometry probe and advanced anti-counterfeiting based on the CDs/YVO4: Eu3+ composite materials. Scr. Mater. 186, 298–303 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.015

    Article  CAS  Google Scholar 

  126. Yin, M., Wu, L., Li, Z., Ren, J., Qu, X.: Facile in situ fabrication of graphene-upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale 4, 400–404 (2012). https://doi.org/10.1039/C1NR11393C

    Article  CAS  Google Scholar 

  127. Wei, W., He, T., Teng, X., Wu, S., Ma, L., Zhang, H., Ma, J., Yang, Y., Chen, H., Han, Y., Sun, H., Huang, L.: Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. Small 8, 2271–2276 (2012). https://doi.org/10.1002/smll.201200065

    Article  CAS  Google Scholar 

  128. Kataria, M., Yadav, K., Haider, G., Liao, Y.M., Liou, Y.-R., Cai, S.-Y., Lin, H., Chen, Y.H., Paul Inbaraj, C.R., Bera, K.P., Lee, H.M., Chen, Y.-T., Wang, W.-H., Chen, Y.F.: Transparent, wearable, broadband, and highly sensitive upconversion nanoparticles and graphene-based hybrid photodetectors. ACS Photon. 5, 2336–2347 (2018). https://doi.org/10.1021/acsphotonics.8b00141

    Article  CAS  Google Scholar 

  129. Thakur, M.K., Gupta, A., Fakhri, M.Y., Chen, R.S., Wu, C.T., Lin, K.H., Chattopadhyay, S.: Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector. Nanoscale 11, 9716–9725 (2019). https://doi.org/10.1039/C8NR10280E

    Article  CAS  Google Scholar 

  130. Li, Y., Wang, G., Pan, K., Jiang, B., Tian, C., Zhou, W., Fu, H.: NaYF4: Er3+/Yb3+-graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem. 22, 20381 (2012). https://doi.org/10.1039/c2jm34113a

    Article  CAS  Google Scholar 

  131. Wu, S., Sun, X., Zhu, J., Chang, J., Zhang, S.: Increasing electrical conductivity of upconversion materials by in situ binding with graphene. Nanotechnology 27, 345703 (2016). https://doi.org/10.1088/0957-4484/27/34/345703

    Article  CAS  Google Scholar 

  132. Yan, L., Chang, Y.-N., Yin, W., Liu, X., Xiao, D., Xing, G., Zhao, L., Gu, Z., Zhao, Y.: Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Phys. Chem. Chem. Phys. 16, 1576–1582 (2014). https://doi.org/10.1039/C3CP54317J

    Article  CAS  Google Scholar 

  133. Liu, C., Wang, Z., Jia, H., Li, Z.: Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem. Commun. 47, 4661 (2011). https://doi.org/10.1039/c1cc10597c

    Article  CAS  Google Scholar 

  134. Mendez-Gonzalez, D., Calderón, O.G., Melle, S., González-Izquierdo, J., Bañares, L., López-Díaz, D., Velázquez, M.M., López-Cabarcos, E., Rubio-Retama, J., Laurenti, M.: Contribution of resonance energy transfer to the luminescence quenching of upconversion nanoparticles with graphene oxide. J. Colloid. Interface Sci. 575, 119–129 (2020). https://doi.org/10.1016/j.jcis.2020.04.076

    Article  CAS  Google Scholar 

  135. Rong, Y., Li, H., Ouyang, Q., Ali, S., Chen, Q.: Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 239, 118500 (2020). https://doi.org/10.1016/j.saa.2020.118500

    Article  CAS  Google Scholar 

  136. Alonso-Cristobal, P., Vilela, P., El-Sagheer, A., Lopez-Cabarcos, E., Brown, T., Muskens, O.L., Rubio-Retama, J., Kanaras, A.G.: Highly sensitive DNA sensor based on upconversion nanoparticles and graphene oxide. ACS Appl. Mater. Interfaces 7, 12422–12429 (2015). https://doi.org/10.1021/am507591u

  137. Wu, S., Duan, N., Ma, X., Xia, Y., Wang, H., Wang, Z., Zhang, Q.: Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 84, 6263–6270 (2012). https://doi.org/10.1021/ac301534w

    Article  CAS  Google Scholar 

  138. Laurenti, M., Paez-Perez, M., Algarra, M., Alonso-Cristobal, P., Lopez-Cabarcos, E., Mendez-Gonzalez, D., Rubio-Retama, J.: Enhancement of the upconversion emission by visible-to-near-infrared fluorescent graphene quantum dots for miRNA detection. ACS Appl. Mater. Interfaces 8, 12644–12651 (2016). https://doi.org/10.1021/acsami.6b02361

    Article  CAS  Google Scholar 

  139. Liu, W., Liu, G., Dong, X., Wang, J., Yu, W.: Multifunctional MWCNTs-NaGdF4: Yb3+, Er3+, Eu3+ hybrid nanocomposites with potential dual-mode luminescence, magnetism and photothermal properties. Phys. Chem. Chem. Phys. 35, 22659–22667 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  140. Wang, Y., Wang, H., Liu, D., Song, S., Wang, X., Zhang, H.: Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 34, 7715–7724 (2013). https://doi.org/10.1016/j.biomaterials.2013.06.045

    Article  CAS  Google Scholar 

  141. Ruiyi, L., Zaijun, L., Xiulan, S., Jan, J., Lin, L., Zhiguo, G., Guangli, W.: Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics. Chem. Eng. J. 382, 122992 (2020). https://doi.org/10.1016/j.cej.2019.122992

    Article  CAS  Google Scholar 

  142. Rani, J.R., Oh, S.-I., Woo, J.M., Tarwal, N.L., Kim, H.-W., Mun, B.S., Lee, S., Kim, K.-J., Jang, J.-H.: Graphene oxide-phosphor hybrid nanoscrolls with high luminescent quantum yield: synthesis, structural, and X-ray absorption studies. ACS Appl. Mater. Interfaces 7, 5693–5700 (2015). https://doi.org/10.1021/am507342w

    Article  CAS  Google Scholar 

  143. Zhang, C., Yuan, Y., Zhang, S., Wang, Y., Liu, Z.: Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew. Chemie. Int. Ed. 50, 6851–6854 (2011). https://doi.org/10.1002/anie.201100769

    Article  CAS  Google Scholar 

  144. Luoshan, M., Li, M., Liu, X., Guo, K., Bai, L., Zhu, Y., Sun, B., Zhao, X.: Performance optimization in dye-sensitized solar cells with β-NaYF4: Er3+/Yb3+ and graphene multi-functional layer hybrid composite photoanodes. J. Power Sources 287, 231–236 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.068

    Article  CAS  Google Scholar 

  145. Liu, Y., Xu, Y., Geng, X., Huo, Y., Chen, D., Sun, K., Zhou, G., Chen, B., Tao, K.: Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dot-upconversion nanocrystal hybrid nanoparticles. Small 14, 1800293 (2018). https://doi.org/10.1002/smll.201800293

    Article  CAS  Google Scholar 

  146. Bera, D., Qian, L., Tseng, T.-K., Holloway, P.H.: Quantum dots and their multimodal applications: a review. Materials (Basel) 3, 2260–2345 (2010). https://doi.org/10.3390/ma3042260

    Article  CAS  Google Scholar 

  147. Mattsson, L., Wegner, K.D., Hildebrandt, N., Soukka, T.: Upconverting nanoparticle to quantum dot FRET for homogeneous double-nano biosensors. RSC Adv. 5, 13270–13277 (2015). https://doi.org/10.1039/C5RA00397K

    Article  CAS  Google Scholar 

  148. Bednarkiewicz, A., Nyk, M., Samoc, M., Strek, W.: Up-conversion FRET from Er3+ /Yb3+: NaYF4 nanophosphor to CdSe quantum dots. J. Phys. Chem. C 114, 17535–17541 (2010). https://doi.org/10.1021/jp106120d

    Article  CAS  Google Scholar 

  149. Chang, J., Liu, Y., Li, J., Wu, S., Niu, W., Zhang, S.: Strong red and NIR emission in NaYF4: Yb3+, Tm3+/QDs nanoheterostructures. J. Mater. Chem. C 1, 1168–1173 (2013). https://doi.org/10.1039/C2TC00184E

    Article  CAS  Google Scholar 

  150. Antoniak, M.A., Wawrzyńczyk, D., Zaręba, J.K., Samoć, M., Nyk, M.: Spectrally resolved two-photon absorption properties and switching of the multi-modal luminescence of NaYF4: Yb, Er/CdSe hybrid nanostructures. J. Mater. Chem. C 6, 5949–5956 (2018). https://doi.org/10.1039/C8TC00969D

  151. Bi, X., He, G., Di, W., Qin, W.: Enhanced near-infrared upconversion luminescence of NaYF4: Yb3+, Tm3+/CdSe nanoheterostructures. Mater. Lett. 173, 187–190 (2016). https://doi.org/10.1016/j.matlet.2016.02.158

    Article  CAS  Google Scholar 

  152. Cui, S., Xu, S., Song, H., Xu, W., Chen, X., Zhou, D., Yin, Z., Han, W.: Highly sensitive and selective detection of mercury ions based on up-conversion FRET from NaYF4: Yb3+/Er3+ nanophosphors to CdTe quantum dots. RSC Adv. 5, 99099–99106 (2015). https://doi.org/10.1039/C5RA16200A

    Article  CAS  Google Scholar 

  153. Feng, P., Pan, Y., Ye, H.: Core–shell structured NaYF4: Yb, Tm@CdS composite for enhanced photocatalytic properties. RSC Adv. 8, 35306–35313 (2018). https://doi.org/10.1039/C8RA06800C

    Article  CAS  Google Scholar 

  154. Yan, C., Dadvand, A., Rosei, F., Perepichka, D.F.: Near-IR photoresponse in new up-converting CdSe/NaYF4: Yb, Er nanoheterostructures. J. Am. Chem. Soc. 132, 8868–8869 (2010). https://doi.org/10.1021/ja103743t

    Article  CAS  Google Scholar 

  155. Song, D., Chi, S., Li, X., Wang, C., Li, Z., Liu, Z.: Upconversion system with quantum dots as sensitizer: improved photoluminescence and PDT efficiency. ACS Appl. Mater. Interfaces 11, 41100–41108 (2019). https://doi.org/10.1021/acsami.9b16237

    Article  CAS  Google Scholar 

  156. Ambroz, F., Macdonald, T.J., Martis, V., Parkin, I.P.: Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods 2, 1800173 (2018). https://doi.org/10.1002/smtd.201800173

    Article  CAS  Google Scholar 

  157. Osterrieth, J.W.M., Fairen-Jimenez, D.: Metal-Organic Framework composites for theragnostics and drug delivery applications. Biotechnol. J. 2000005, 2000005 (2020). https://doi.org/10.1002/biot.202000005

    Article  CAS  Google Scholar 

  158. Li, Y., Tang, J., He, L., Liu, Y., Liu, Y., Chen, C., Tang, Z.: Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 27, 4075–4080 (2015). https://doi.org/10.1002/adma.201501779

    Article  CAS  Google Scholar 

  159. Deng, K., Hou, Z., Li, X., Li, C., Zhang, Y., Deng, X., Cheng, Z., Lin, J.: Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci. Rep. 5, 7851 (2015). https://doi.org/10.1038/srep07851

    Article  CAS  Google Scholar 

  160. Yuan, Z., Zhang, L., Li, S., Zhang, W., Lu, M., Pan, Y., Xie, X., Huang, L., Huang, W.: Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 140, 15507–15515 (2018). https://doi.org/10.1021/jacs.8b10122

    Article  CAS  Google Scholar 

  161. Wang, D., Zhao, C., Gao, G., Xu, L., Wang, G., Zhu, P.: Multifunctional NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence for drug delivery and cell imaging. Nanomaterials 9, 1274 (2019). https://doi.org/10.3390/nano9091274

    Article  CAS  Google Scholar 

  162. Cong, H.-L., Jia, F.-F., Wang, S., Yu, M.-T., Shen, Y.-Q., Yu, B.: Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for targeting and drug delivery. Integr. Ferroelectr. 206, 66–78 (2020). https://doi.org/10.1080/10584587.2020.1728627

    Article  CAS  Google Scholar 

  163. Li, Z., Qiao, X., He, G., Sun, X., Feng, D., Hu, L., Xu, H., Xu, H.-B., Ma, S., Tian, J.: Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 13, 3377–3386 (2020). https://doi.org/10.1007/s12274-020-3025-0

    Article  CAS  Google Scholar 

  164. Li, M., Wang, J., Zheng, Y., Zheng, Z., Li, C., Li, Z.: Anchoring NaYF4: Yb, Tm upconversion nanocrystals on concave MIL-53(Fe) octahedra for NIR-light enhanced photocatalysis. Inorg. Chem. Front. 4, 1757–1764 (2017). https://doi.org/10.1039/C7QI00366H

    Article  CAS  Google Scholar 

  165. Li, M., Zheng, Z., Zheng, Y., Cui, C., Li, C., Li, Z.: Controlled growth of metal-organic framework on upconversion nanocrystals for NIR-enhanced photocatalysis. ACS Appl. Mater. Interfaces 9, 2899–2905 (2017). https://doi.org/10.1021/acsami.6b15792

    Article  CAS  Google Scholar 

  166. Liu, Y., Zhang, C., Liu, H., Li, Y., Xu, Z., Li, L., Whittaker, A.: Controllable synthesis of up-conversion nanoparticles UCNPs@MIL-PEG for pH-responsive drug delivery and potential up-conversion luminescence/magnetic resonance dual-mode imaging. J. Alloys Compd. 749, 939–947 (2018). https://doi.org/10.1016/j.jallcom.2018.03.355

    Article  CAS  Google Scholar 

  167. Mukherjee, P., Kumar, A., Bhamidipati, K., Puvvada, N., Sahu, S.K.: Facile strategy to synthesize magnetic upconversion nanoscale metal-organic framework composites for theranostics application. ACS Appl. Bio. Mater. 3, 869–880 (2020). https://doi.org/10.1021/acsabm.9b00949

    Article  CAS  Google Scholar 

  168. Dong, B., Song, H., Yu, H., Zhang, H., Qin, R., Bai, X., Pan, G., Lu, S., Wang, F., Fan, L., Dai, Q.: Upconversion properties of Ln3+ doped NaYF4/polymer composite fibers prepared by electrospinning. J. Phys. Chem. C 112, 1435–1440 (2008). https://doi.org/10.1021/jp076958z

    Article  CAS  Google Scholar 

  169. Yan, B., Boyer, J.-C., Habault, D., Branda, N.R., Zhao, Y.: Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134, 16558–16561 (2012). https://doi.org/10.1021/ja308876j

    Article  CAS  Google Scholar 

  170. Wang, J., Hu, J., Tang, D., Liu, X., Zhen, Z.: Oleic acid (OA)-modified LaF3: Er, Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications. J. Mater. Chem. 17, 1597–1601 (2007). https://doi.org/10.1039/B617754A

    Article  CAS  Google Scholar 

  171. Boyer, J.C., Johnson, N.J.J., van Veggel, F.C.J.M.: Upconverting lanthanide-doped NaYF4-PMMA polymer composites prepared by in situ polymerization. Chem. Mater. 21, 2010–2012 (2009). https://doi.org/10.1021/cm900756h

    Article  CAS  Google Scholar 

  172. Kim, S.Y., Won, Y.-H., Jang, H.S.: A Strategy to enhance Eu3+ emission from LiYF4: Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci. Rep. 5, 7866 (2015). https://doi.org/10.1038/srep07866

    Article  CAS  Google Scholar 

  173. Hu, F., Liu, X., Chen, R., Liu, Y., Mai, Y., Maalej, R., Yang, Y.: Judd-Ofelt parameters of the up-conversion phosphors: Er3+ doped BaGd2ZnO5/PMMA and NaYF4/PMMA. J. Rare Earths. 35, 964–969 (2017). https://doi.org/10.1016/S1002-0721(17)61000-7

    Article  CAS  Google Scholar 

  174. Li, J., Zhao, Q., Shi, F., Liu, C., Tang, Y.: NIR-mediated nanohybrids of upconversion nanophosphors and fluorescent conjugated polymers for high-efficiency antibacterial performance based on fluorescence resonance energy transfer. Adv. Healthc. Mater. 5, 2967–2971 (2016). https://doi.org/10.1002/adhm.201600868

    Article  CAS  Google Scholar 

  175. Dai, Y., Ma, P., Cheng, Z., Kang, X., Zhang, X., Hou, Z., Li, C., Yang, D., Zhai, X., Lin, J.: Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4: Yb3+/Er3+@hydrogel core-shell hybrid microspheres. ACS Nano 6, 3327–3338 (2012). https://doi.org/10.1021/nn300303q

    Article  CAS  Google Scholar 

  176. Darwish, A.M., Sagapolutele, M.T., Sarkisov, S., Patel, D., Hui, D., Koplitz, B.: Double beam pulsed laser deposition of composite films of poly(methyl methacrylate) and rare earth fluoride upconversion phosphors. Compos. Part B Eng. 55, 139–146 (2013). https://doi.org/10.1016/j.compositesb.2013.06.013

    Article  CAS  Google Scholar 

  177. Darwish, A.M., Moore, S., Mohammad, A., Alexander, D., Bastian, T., Dorlus, W., Sarkisov, S., Patel, D., Mele, P., Koplitz, B., Hui, D.: Polymer nano-composite films with inorganic upconversion phosphor and electro-optic additives made by concurrent triple-beam matrix assisted and direct pulsed laser deposition. Compos. Part B Eng. 109, 82–90 (2017). https://doi.org/10.1016/j.compositesb.2016.10.053

    Article  CAS  Google Scholar 

  178. Tan, H., Xie, S., Li, N., Tong, C., Xu, L., Xu, J., Zhang, C.: Synthesis and characterization of NaYF4: Yb, Er up-conversion phosphors/poly(vinyl alcohol) composite fluorescent films. Mater. Express 8, 141–148 (2018). https://doi.org/10.1166/mex.2018.1420

    Article  CAS  Google Scholar 

  179. Niu, W., Chen, H., Chen, R., Huang, J., Sun, H., Tok, A.I.Y.: NaYF4: Yb, Er-MoS2:from synthesis and surface ligand stripping to negative infrared photoresponse. Chem. Commun. 51, 9030–9033 (2015). https://doi.org/10.1039/C4CC10399H

    Article  CAS  Google Scholar 

  180. Zhou, N., Xu, B., Gan, L., Zhang, J., Han, J., Zhai, T.: Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device. J. Mater. Chem. C 5, 1591–1595 (2017). https://doi.org/10.1039/C6TC05113H

    Article  CAS  Google Scholar 

  181. Chatti, M., Adusumalli, V.N.K.B., Ganguli, S., Mahalingam, V.: Near-infrared light triggered superior photocatalytic activity from MoS2-NaYF4: Yb3+/Er3+ nanocomposites. Dalt. Trans. 45, 12384–12392 (2016). https://doi.org/10.1039/C6DT02548J

    Article  CAS  Google Scholar 

  182. Qiao, Y., Zhou, X., Geng, H., Sun, L., Zhen, D., Cai, Q.: β-NaYF4: Yb, Er, Gd nanorods@1T/2H-MoS2 for 980 nm NIR-triggered photocatalytic bactericidal properties. New. J. Chem. 44, 12201–12207 (2020). https://doi.org/10.1039/D0NJ00908C

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, P.P., Malik, M., Poddar, P. (2022). Progress on Lanthanide Ion-Activated Inorganic Hybrid Phosphors: Properties and Applications. In: Upadhyay, K., Thomas, S., Tamrakar, R.K. (eds) Hybrid Phosphor Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-90506-4_13

Download citation

Publish with us

Policies and ethics