Skip to main content

Real-Time Algorithms for Visualizing and Processing Seismic and Reservoir Data

  • Chapter
  • First Online:
Interactive Data Processing and 3D Visualization of the Solid Earth

Abstract

In this chapter, we present research that deals with the rendering and processing of seismic volumes and unstructured reservoir grids. We focus on approaches that facilitate interactive workflows, i.e., real-time rendering of seismic data, as well as real-time extraction of seismic structures. This is enabled by the parallel processing power of graphics processing units (GPUs). The chapter consists of three parts. The first part introduces basic and established techniques for seismic volume and reservoir visualization. The second part discusses more experimental and advanced methods that are not (yet) common among geoscientists. The third part covers real-time methods for extracting objects and structures from seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Plate, A. Grundhoefer, B. Schmidt, B. Fröhlich, Occlusion culling for sub-surface models in geo-scientific applications, in VISSYM'04 Proceedings of the Sixth Joint Eurographics—IEEE TCVG Conference on Visualization, 2004, pp. 267–272

    Google Scholar 

  2. G.D. Kidd, Fundamentals of 3D seismic volume visualization, in Offshore Technology Conference, 1999

    Google Scholar 

  3. S. Chopra, K.J. Marfurt, Geophysical corner: 3-D seismic volume visualization in color: Part 3. AAPG Explorer, May 2020

    Google Scholar 

  4. S. Chopra, R.K. Sharma, K.J. Marfurt, Seismic volume visualization in color. Search and Discovery Article #42491 (2020)

    Google Scholar 

  5. D. Gao, 3D seismic volume visualization and interpretation: an integrated workflow with case studies. Geophysics 74 (2009)

    Google Scholar 

  6. Z. Li, Volume visualization of 3D seismic data. Master Thesis. The University of Calgary. Alberta. Dept. of Computer Science, 2002

    Google Scholar 

  7. C. Ma, J. Rokne, 3D seismic volume visualization (Chap. 13), in Integrated Image and Graphics Technologies (Springer, 2004)

    Google Scholar 

  8. J. Kruger, W. Westermann, Acceleration techniques for GPU-based volume rendering, in VIS ‘03: Proceedings of the 14th IEEE Visualization 2003 (2003)

    Google Scholar 

  9. J. Plate, M. Tirtasana, R. Carmona, B. Fröhlich, Octreemizer: a hierarchical approach for interactive roaming through very large volumes, in Proceedings of VISSYM ’02, 2002, pp. 53–64

    Google Scholar 

  10. J. Plate, T. Holtkaemper, B. Fröhlich, A flexible multivolume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE Trans. Visual Comput. Graphics 13(6), 1584–1591 (2007)

    Article  Google Scholar 

  11. L. Zhou, C. Hansen, Interactive rendering and efficient querying for large multivariate seismic volumes on consumer level PCs, in IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), 2013

    Google Scholar 

  12. J. Beyer, M. Hadwiger, H. Pfister, State-of-the-art in GPU-based large-scale volume visualization. Comput. Graph. Forum (2015)

    Google Scholar 

  13. K. Engel, M. Kraus, T. Ertl, High-quality pre-integrated volume rendering using hardware-accelerated pixel shading, in Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2001, pp. 9–16

    Google Scholar 

  14. L. Castanie, B. Levy, F. Bosquet, Volumeexplorer: roaming large volumes to couple visualization and data processing for oil and gas exploration, in Proceedings of IEEE Visualization, 2005, pp. 247–254

    Google Scholar 

  15. L. Castanie, F. Bosquet, B. Levy, Advances in seismic interpretation using new volume visualization techniques. First Break 23, 69–75 (2005)

    Article  Google Scholar 

  16. C. Lux, B. Frohlich, GPU-based ray casting of stacked out-of-core height fields. Adv. Visual Comput. ISVC (2011)

    Google Scholar 

  17. A. Graciano, A.J. Rueda, A. Pospisil, J. Bittner, B. Benes, An efficient representation and direct rendering of layered datasets. IEEE Trans. Visual. Comput. Graph. (2020)

    Google Scholar 

  18. S. Carlson, A. Pelosi, Multi-attribute visual classification of continuous and fragmented seismic data, 2007

    Google Scholar 

  19. B.T. Phong, Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  20. P.M. Silva, M. Machado, M. Gattass, 3d seismic volume rendering, in Eighth International Congress of The Brazilian Geophysical Society, p22(3), 2003, pp. 181–193

    Google Scholar 

  21. A. Barnes, Shaded relief seismic attribute. Geophysics 68(4) (2003)

    Google Scholar 

  22. L. Liro, K. Cline, A new paradigm for data integration and collaboration using 3-D visualization technology. The Leading Edge (2001)

    Google Scholar 

  23. D. Patel, S. Bruckner, I. Viola, E. Gröller, Seismic volume visualization for horizon extraction. Pacific Visual. (2010)

    Google Scholar 

  24. T. Höllt, W. Freiler, F. Gschwantner, H. Doleisch, G. Heinemann, M. Hadwiger, SeiVis: an interactive visual subsurface modeling application. IEEE Trans. Visual. Comput. Graph. 18(12) (2012)

    Google Scholar 

  25. V. Soltészová, D. Patel, I. Viola, Chromatic shadows for improved perception. Non-Photorealistic Animation and Rendering (NPAR), 2011

    Google Scholar 

  26. L.Q. Campagnolo, W. Celes, An experimental study on volumetric visualization of black oil reservoir. Comput. Graph. (2020)

    Google Scholar 

  27. J. Grotzinger, T.H. Jordan, F. Press, R. Siever, Understanding Earth (W. H. Freeman and Company, 1994)

    Google Scholar 

  28. Federal Geographic Data Committee, FGDC Digital cartographic standard for geologic map symbolization: Reston, Va, 2006, pp. 195–197 “37—LITHOLOGIC PATTERNS”. http://www.fgdc.gov/standards/projects/FGDC-standards-projects/geo-symbol/FGDC-GeolSymFinalDraft.pdf

  29. International Stratigraphic Chart. Commission for the geological map of the world. http://ccgm.free.fr/charte-souris_gb.html

  30. D. Patel, C. Giertsen, J. Thurmond, E. Gröller. Illustrative rendering of seismic data, in Proceedings of Vision Modeling and Visualization, 2007

    Google Scholar 

  31. D. Patel, C. Giertsen, J. Thurmond, J. Gjelberg, E. Gröller, The seismic analyzer: interpreting and illustrating 2d seismic data. IEEE Trans. Visual Comput. Graphics 14(6), 1571–1578 (2008)

    Article  Google Scholar 

  32. D. Patel, O. Sture, H. Hauser, C. Giertsen, E. Gröller, Knowledge-assisted visualization of seismic data. Comput. Graph. 33 (2009)

    Google Scholar 

  33. Å. Birkeland, S. Bruckner, A. Brambilla, I. Viola, Illustrative membrane clipping. Comput. Graph. Forum 31 (2012)

    Google Scholar 

  34. S. Bruckner, E. Gröller, Exploded views for volume data. IEEE Trans. Visual. Comput. Graph. 12(5) (2006)

    Google Scholar 

  35. T. Ropinski, F. Steinicke, K.H. Hinrichs, Visual exploration of seismic volume datasets. J. Proc. WSCG 14, 73–80 (2006)

    Google Scholar 

  36. S. Bruckner, E. Gröller, VolumeShop: an interactive system for direct volume illustration, in Proceedings of IEEE Visualization, 2005, pp. 671–678

    Google Scholar 

  37. I. Viola, A. Kanitsar, E. Gröller, Importance-driven volume rendering, in Proceedings of IEEE Visualization, 2004, pp. 139–146

    Google Scholar 

  38. E. Lidal, H. Hauser, I. Viola, Design principles for cutaway visualization of geological models, in 28th Spring Conference on Computer Graphics (SCCG), 2012

    Google Scholar 

  39. A. Konev, M. Matusich, I. Viola, H. Schulze, D. Cornel, J. Waser, Fast cutaway visualization of sub-terrain tubular networks. Comput. Graph. (2018)

    Google Scholar 

  40. S. Takahashi, I. Fujishiro, Y. Takeshima, T. Nishita, A feature-driven approach to locating optimal viewpoints for volume visualization, in Proceedings of IEEE Visualization, 2005

    Google Scholar 

  41. C. Giertsen, Direct volume rendering of multiple scalar fields. J. Visual. Comput. Animat. 5 (1994)

    Google Scholar 

  42. A. Rocha, R.C.R. Mota, H. Hamdi, U.R. Alim, M. Costa Sousa, Illustrative multivariate visualization for geological modelling, in Eurographics Conference on Visualization (EuroVis), 2018

    Google Scholar 

  43. T.M. Toledo, W. Celes, Visualizing 3D flow of black-oil reservoir models on arbitrary surfaces using projected 2D line integral convolution, in 24th SIBGRAPI Conference on Graphics, Patterns and Images (2011)

    Google Scholar 

  44. B. Cabral, L.C. Leedom, Imaging vector fields using line integral convolution. SIGGRAPH ‘93

    Google Scholar 

  45. B. Franceschin, F. Abraham, L.F. Netto, W. Celes, GPU-based rendering of arbitrarily complex cutting surfaces for black oil reservoir models, in SIBGRAPI Conference on Graphics, Patterns and Images (2019)

    Google Scholar 

  46. A. Calomeni, W. Celes. Assisted and automatic navigation in black oil reservoir models based on probabilistic roadmaps, in Symposium on Interactive 3D graphics and games (I3D), 2006

    Google Scholar 

  47. T. Hollt, F.M. Ravanelli, M. Hadwiger, I. Hoteit, Visual analysis of reservoir simulation ensembles, in Workshop on Visualisation in Environmental Sciences (EnvirVis) (2016)

    Google Scholar 

  48. S. Mazza, D. Patel, I. Viola, Homomorphic-encrypted volume rendering. IEEE Trans. Visual. Comput. Graph. (2021)

    Google Scholar 

  49. K. Bhattacharjee, M. Chen, A. Dasgupta, Privacy-preserving data visualization: reflections on the state of the art and research opportunities. Comput. Graph. Forum (2020)

    Google Scholar 

  50. J. Henderson, S. Purves, G. Fisher, C. Leppard, Delineation of geological elements from RGB color blending of seismic attribute volumes. The Leading Edge (2008)

    Google Scholar 

  51. J. Liu, K. Marfurt, Multi-color display of spectral attributes. SEG, 2006

    Google Scholar 

  52. J. Liu, K. Marfurt, Instantaneous spectral attributes to detect channels. Geophysics 72(2) (2007)

    Google Scholar 

  53. H. Guo, K. Marfurt, J. Liu, Principal component spectral analysis. Geophysics 74(4) (2009)

    Google Scholar 

  54. E. Vuçini, D. Patel, E. Gröller, Enhancing visualization with real-time frequency-based transfer functions, in Proceedings of IS&T/SPIE Conference on Visualization and Data Analysis, 2011, pp. 78680L-1–78680L-12

    Google Scholar 

  55. cuFFT, the NVIDIA® CUDA™ Fast Fourier Transform (FFT). CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/cufft/index.html. Accessed Mar 2021

  56. C. Chen, C. Ho, C. Correa, K. Lu Ma, A. Elgamal, Visualizing three-dimensional earthquake simulation data. Comput. Sci. Eng. (2010)

    Google Scholar 

  57. A. Gerhardt, M. Machado, Enhanced Visualization of 3-D Seismic Data. SEG (2002)

    Google Scholar 

  58. G. Kindlmann, Semi-automatic generation of transfer functions for direct volume rendering. M.Sc. Thesis, Cornell University, 1999

    Google Scholar 

  59. S. Midtvåge, A. Finstad. GIM—A Method for Computer Assisted Seismic Interpretation. SEG Houston (2009)

    Google Scholar 

  60. J. Gallon, S. Guillon, B. Jobard, H. Barucq, N. Keskes, Slimming brick cache strategies for seismic horizon propagation algorithms, in l Symposium on Volume Graphics, 2010

    Google Scholar 

  61. B. Kadlec, H. Tufo, G. Dorn, Knowledge-assisted visualization and segmentation of geologic features. Comput. Graph. Appl. (2010)

    Google Scholar 

  62. B. Kadlec, G. Dorn, Interactive Visualization and Interpretation of Geologic Surfaces in 3-D Seismic data. SEG Houston, 2009

    Google Scholar 

  63. B. Kadlec, Confidence and curvature-guided level sets for channel segmentation, in 78th Annual International Meeting. SEG 2008

    Google Scholar 

  64. T. Höllt, J. Beyer, F. Gschwantner, P. Muigg, H. Doleisch, G. Heinemann, M. Hadwiger. Interactive seismic interpretation with piecewise global energy minimization. Pacific Visual. (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, D., Höllt, T., Hadwiger, M. (2021). Real-Time Algorithms for Visualizing and Processing Seismic and Reservoir Data. In: Patel, D. (eds) Interactive Data Processing and 3D Visualization of the Solid Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-90716-7_2

Download citation

Publish with us

Policies and ethics