Skip to main content

Addressing the Challenge of Data Heterogeneity Using a Homogeneous Feature Vector Representation: A Study Using Time Series and Cardiovascular Disease Classification

  • Conference paper
  • First Online:
Artificial Intelligence XXXVIII (SGAI-AI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13101))

Abstract

An investigation into the use of a unifying Homogeneous Feature Vector Representation (HFVR), to address the challenge of applying machine learning and/or deep learning to heterogeneous data, is presented. To act as a focus, Atrial Fibrillation classification is considered which features both tabular and Electrocardiogram (ECG) time series data. The challenge of constructing HFVRs is the process for selecting features. A mechanism where by this can be achieved, in terms of motifs and discords, with respect to ECG time series data is presented. The presented evaluation demonstrates that more effective AF classification can be achieved using the idea of HFVR than would otherwise be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://2019.icbeb.org/Challenge.html.

References

  1. Aldosari, H., Coenen, F., Lip, G., Zheng, Y.: Motif based feature vectors: towards a homogeneous data representation for cardiovascular diseases classification. In: Proceedings of the 23rd International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2021 (2021)

    Google Scholar 

  2. Cabrera, D., et al.: Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation. Appl. Soft Comput. 58, 53–64 (2017)

    Article  Google Scholar 

  3. Christov, I., Krasteva, V., I. Simova, T.N., Schmid, R.: Multi-parametric analysis for atrial fibrillation classification in ECG. In: IEEE Computing in Cardiology, CinC 2017, pp. 1–4 (2017)

    Google Scholar 

  4. Coyle, D., Prasad, G., McGinnity, T.M.: A time-series prediction approach for feature extraction in a brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 461–467 (2005)

    Article  Google Scholar 

  5. Das, M.K., Ari, S.: ECG beats classification using mixture of features. Int. Sch. Res. Not. 2014, 178436 (2014)

    Google Scholar 

  6. Dau, H.A., Keogh, E.: Matrix profile V: a generic technique to incorporate domain knowledge into motif discovery. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 125–134 (2017)

    Google Scholar 

  7. Ding, S., Du, M., Sun, T., Xu, X., Xue, Y.: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood. Knowl. Based Syst. 133, 294–313 (2017)

    Article  Google Scholar 

  8. Golinko, E., Sonderman, T., Zhu, X.: CNFL: categorical to numerical feature learning for clustering and classification. In: 2017 IEEE 2nd International Conference on Data Science in Cyberspace (DSC), pp. 585–594. IEEE (2017)

    Google Scholar 

  9. Inoue, H., et al.: Impact of gender on the prognosis of patients with nonvalvular atrial fibrillation. Am. J. Cardiol. 113(6), 957–962 (2014)

    Article  Google Scholar 

  10. Jain, A., Jain, V.: Voting ensemble classifier for sentiment analysis. In: Abraham, A., Castillo, O., Virmani, D. (eds.) Proceedings of 3rd International Conference on Computing Informatics and Networks. LNNS, vol. 167, pp. 255–261. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9712-1_22

    Chapter  Google Scholar 

  11. Jovic, A., Bogunovic, N.: Feature extraction for ECG time-series mining based on chaos theory. In: Proceedings of the 29th International Conference on Information Technology Interfaces (2007)

    Google Scholar 

  12. Keogh, E.J., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the 5th IEEE International Conference on Data Mining, ICDM 2005, pp. 226–233 (2005)

    Google Scholar 

  13. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: Proceedings of the Science and Information Conference, SAI 2014, pp. 372–378 (2014)

    Google Scholar 

  14. Kumar, D., Batra, U.: Breast cancer histopathology image classification using soft voting classifier. In: Abraham, A., Castillo, O., Virmani, D. (eds.) Proceedings of 3rd International Conference on Computing Informatics and Networks. LNNS, vol. 167, pp. 619–631. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9712-1_53

    Chapter  Google Scholar 

  15. Li, P., et al.: High-performance personalized heartbeat classification model for long-term ECG signal. IEEE Trans. Biomed. Eng. 64(1), 78–86 (2016)

    Article  Google Scholar 

  16. Lip, G., et al.: Atrial fibrillation. Nat. Rev. Dis. Primers. 31, 16016 (2016). https://doi.org/10.1038/nrdp.2016.16

    Article  Google Scholar 

  17. Liu, F., et al.: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inf. 8(7), 1368–1373 (2018)

    Article  Google Scholar 

  18. Maletzke, A.G., et al.: Time series classification using motifs and characteristics extraction: a case study on ECG databases. In: Proceedings of the 4th International Workshop on Knowledge Discovery, Knowledge Management and Decision Support (2013)

    Google Scholar 

  19. Mueen, A., Keogh, E.J., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the SIAM International Conference on Data Mining, SDM 2009, pp. 473–484 (2009)

    Google Scholar 

  20. Naderi, S., et al.: The impact of age on the epidemiology of atrial fibrillation hospitalizations. Am. J. Med. 127(2), 158.e1–158.e7 (2014)

    Google Scholar 

  21. Nady, S., Moness, M., Massoud, M., Gharieb, R.: Combining continuous wavelet transform and Teager-Kaiser Energy operator for ECG arrhythmia detection. In: 8th Cairo International Biomedical Engineering Conference (CIBEC), pp. 76–79. IEEE (2016)

    Google Scholar 

  22. Padmavathi, S., Ramanujam, E.: Naïve Bayes classifier for ECG abnormalities using multivariate maximal time series Motif. Procedia Comput. Sci. 47, 222–228 (2015)

    Article  Google Scholar 

  23. Sánchez-Cauce, R., Pérez-Martín, J., Luque, M.: Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data. Comput. Meth. Program. Biomed. 204, 106045 (2021)

    Article  Google Scholar 

  24. Sun, Y., Zhu, L., Wang, G., Zhao, F.: Multi-input convolutional neural network for flower grading. J. Electr. Comput. Eng. 2017, 9240407:1–9240407:8 (2017)

    Google Scholar 

  25. Ventura, G., Benvenuti, E. (eds.): Advances in Discretization Methods. SSSS, vol. 12. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41246-7

  26. Wang, X., Smith, K., Hyndman, R.: Characteristic-based clustering for time series data. Data Min. Knowl. Disc. 13, 335–364 (2006). https://doi.org/10.1007/s10618-005-0039-x

    Article  MathSciNet  Google Scholar 

  27. Wankhedkar, R., Jain, S.K.: Motif discovery and anomaly detection in an ECG using matrix profile. In: Panigrahi, C.R., Pati, B., Mohapatra, P., Buyya, R., Li, K.-C. (eds.) Progress in Advanced Computing and Intelligent Engineering. AISC, vol. 1198, pp. 88–95. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6584-7_9

    Chapter  Google Scholar 

  28. Yeh, C.C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes Motifs, Discords and Shapelets. In: IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322. IEEE (2016)

    Google Scholar 

  29. Zhao, Z., Särkkä, S., Rad, A.B.: Spectro-temporal ECG analysis for atrial fibrillation. In: Proceedings of the 28th International Workshop on Machine Learning for Signal Processing, MLSP 2018 (2018)

    Google Scholar 

  30. Zhu, Y., Yeh, C.C.M., Zimmerman, Z., Kamgar, K., Keogh, E.: Matrix profile XI: SCRIMP++: time series motif discovery at interactive speeds. In: IEEE International Conference on Data Mining (ICDM), pp. 837–846. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanadi Aldosari , Frans Coenen , Gregory Y. H. Lip or Yalin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aldosari, H., Coenen, F., Lip, G.Y.H., Zheng, Y. (2021). Addressing the Challenge of Data Heterogeneity Using a Homogeneous Feature Vector Representation: A Study Using Time Series and Cardiovascular Disease Classification. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVIII. SGAI-AI 2021. Lecture Notes in Computer Science(), vol 13101. Springer, Cham. https://doi.org/10.1007/978-3-030-91100-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91100-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91099-0

  • Online ISBN: 978-3-030-91100-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics