Skip to main content

Extended Category Learning with Spiking Nets and Spike Timing Dependent Plasticity

  • Conference paper
  • First Online:
Artificial Intelligence XXXVIII (SGAI-AI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13101))

Abstract

Neuroscience makes use of models of neurons, synapases, and learning rules that modify the efficiency of synapses in stimulating neurons. These models can be used to simulate spiking neural networks, and the standard learning rule is based on the timing of the spikes of the pre and post-synaptic neurons. This paper describes the use of these models to categorise documents by translating this Spike Timing Dependent Plasticity into an unsupervised learning rule by representing documents and categories in neurons and presenting them in specific fashion for learning and categorisation. The resulting system is comparable to other unsupervised machine learning systems. This presentation mechanism is extended to combine input feature value pairs to resolve the exclusive or problem. It is further refined to approximate co-variance of features to an arbitrary degree of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code can be found on http://www.cwa.mdx.ac.uk/spikeLearn/spikeLearn.html.

  2. 2.

    https://www.kaggle.com/amananandrai/ag-news-classification-dataset.

References

  1. Belavkin, R., Huyck, C.: Conflict resolution and learning probability matching in a neural cell-assembly architecture. Cogn. Syst. Res. 12, 93–101 (2010)

    Article  Google Scholar 

  2. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Article  Google Scholar 

  3. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  4. Churchland, P., Sejnowski, T.: The Computational Brain. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Davison, A., Yger, P., Kremkow, J., Perrinet, L., Muller, E.: PyNN: towards a universal neural simulator API in python. BMC Neurosci 8(S2), P2 (2007)

    Article  Google Scholar 

  6. Diehl, P., Cook, M.: Efficient implementation of STDP rules on spinnaker neuromorphic hardware. In: International Joint Conference on Neural Networks (IJCNN), pp. 4288–4295 (2014)

    Google Scholar 

  7. Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci 9, 99 (2015)

    Article  Google Scholar 

  8. Furber, S., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014). https://doi.org/10.1109/JPROC.2014.2304638

    Article  Google Scholar 

  9. Gewaltig, M., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  10. Goldberg, Y., Levy, O.: Word2vec explained: deriving mikolov et al’.s negative-sampling word-embedding method (2014). arXiv arXiv:1402.3722

  11. Hao, Y., Huang, X., Dong, M., Xu, B.: A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule. Neural Netw. 121(8), 387 (2020)

    Article  Google Scholar 

  12. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  13. Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  14. Huyck, C.: Learning categories with spiking nets and spike timing dependent plasticity. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 139–144 (2020)

    Google Scholar 

  15. Huyck, C.R., Mitchell, I.G.: Post and pre-compensatory Hebbian learning for categorisation. Cogn. Neurodyn. 8(4), 299–311 (2014). https://doi.org/10.1007/s11571-014-9282-4

    Article  Google Scholar 

  16. Kaggle: New article classification using LSTMS (2020). https://www.kaggle.com/atechnohazard/news-article-classification-using-lstms

  17. Kaggle: News article classifier with different models (2020). https://www.kaggle.com/amananandrai/ag-news-classification-dataset?select=train.csv

  18. Kenter, T., Borisov, A., Rijke, M.D.: Siamese cbow: optimizing word embeddings for sentence representationst (2016). arXiv arXiv:1606.04640

  19. Lisman, J.: The challenge of understanding the brain: where we stand in 2015. Neuron 86(4), 864–882 (2015)

    Article  Google Scholar 

  20. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  21. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    Article  MathSciNet  Google Scholar 

  22. Rochester, N., Holland, J., Haibt, L., Dudag, W.: Tests on a cell assembly theory of the action of the brain using a large digital computer. Trans. Inf. Theory IT 2, 80–93 (1956)

    Article  Google Scholar 

  23. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–59 (2017)

    Article  Google Scholar 

  24. Song, S., Miller, K., Abbott, L.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    Article  Google Scholar 

  25. Thrun, S., et al.: The monk’s problems: a performance comparison of different learning algorithms. Technical Report, CMU-CS-91-197, Carnegie Mellon University, Pittsburgh, PA (1991)

    Google Scholar 

  26. Vigneron, A., Martinet, J.: A critical survey of STDP in spiking neural networks for pattern recognition. In: 2020 International Joint Conference on on Neural Networks (IJCNN), pp. 1–9. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Huyck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huyck, C., Samey, C. (2021). Extended Category Learning with Spiking Nets and Spike Timing Dependent Plasticity. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVIII. SGAI-AI 2021. Lecture Notes in Computer Science(), vol 13101. Springer, Cham. https://doi.org/10.1007/978-3-030-91100-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91100-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91099-0

  • Online ISBN: 978-3-030-91100-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics