Skip to main content

AutoML Technologies for the Identification of Sparse Models

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2021 (IDEAL 2021)

Abstract

Automated machine learning (AutoML) technologies constitute promising tools to automatically infer model architecture, meta-parameters or processing pipelines for specific machine learning tasks given suitable training data. At present, the main objective of such technologies typically relies on the accuracy of the resulting model. Additional objectives such as sparsity can be integrated by pre-processing steps or according penalty terms in the objective function. Yet, sparsity and model accuracy are often contradictory goals, and optimum solutions form a Pareto front. Thereby, it is not guaranteed that solutions at different positions of the Pareto front share the same architectural choices, hence current AutoML technologies might yield sub-optimal results. In this contribution, we propose a novel method, based on the AutoML method TPOT, which enables an automated optimization of ML pipelines with sparse input features along the whole Pareto front. We demonstrate that, indeed, different architectures are found at different points of the Pareto front for benchmark examples from the domain of systems security.

We gratefully acknowledge funding by the BMBF within the project HAIP, grant number 16KIS1212.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kdd cup 1999 (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

  2. Al-Tashi, Q., Abdulkadir, S.J., Rais, H.M., Mirjalili, S., Alhussian, H.: Approaches to multi-objective feature selection: a systematic literature review. IEEE Access 8, 125076–125096 (2020). https://doi.org/10.1109/ACCESS.2020.3007291

    Article  Google Scholar 

  3. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 113–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_6

    Chapter  Google Scholar 

  4. Guan, Z., Bian, L., Shang, T., Liu, J.: When machine learning meets security issues: a survey. In: 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), pp. 158–165 (2018). https://doi.org/10.1109/IISR.2018.8535799

  5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  6. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations and Applications, vol. 207. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-35488-8

    Book  MATH  Google Scholar 

  7. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective feature selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71618-1_27

    Chapter  Google Scholar 

  8. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

  9. Hofstede, R., et al.: Flow monitoring explained: from packet capture to data analysis with netflow and ipfix. IEEE Commun. Surv. Tutor. 16(4), 2037–2064 (2014)

    Article  Google Scholar 

  10. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods, Systems, Challenges. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-05318-5, http://automl.org/book

  11. Kozodoi, N., Lessmann, S., Papakonstantinou, K., Gatsoulis, Y., Baesens, B.: A multi-objective approach for profit-driven feature selection in credit scoring. Decis. Supp. Syst. 120, 106–117 (2019)

    Article  Google Scholar 

  12. Lashkari., A.H., Gil., G.D., Mamun., M.S.I., Ghorbani., A.A.: Characterization of tor traffic using time based features. In: Proceedings of the 3rd International Conference on Information Systems Security and Privacy, vol. 1: ICISSP, pp. 253–262. INSTICC, SciTePress (2017). https://doi.org/10.5220/0006105602530262

  13. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  14. McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 darpa intrusion detection system evaluations as performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur. (TISSEC) 3(4), 262–294 (2000)

    Article  Google Scholar 

  15. McKinney, W.: Data structures for statistical computing in python. In: van der Walt, S., Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, pp. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

  16. Mohr, F., Wever, M., Hüllermeier, E.: Ml-plan: automated machine learning via hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018)

    Article  MathSciNet  Google Scholar 

  17. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6 (2015). https://doi.org/10.1109/MilCIS.2015.7348942

  18. Moustafa, N., Turnbull, B., Choo, K.R.: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things. IEEE Internet Things J. 6(3), 4815–4830 (2019). https://doi.org/10.1109/JIOT.2018.2871719

    Article  Google Scholar 

  19. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 485–492 (2016)

    Google Scholar 

  20. Olson, R.S., Moore, J.H.: Tpot: A tree-based pipeline optimization tool for automating machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings of the Workshop on Automatic Machine Learning. Proceedings of Machine Learning Research, vol. 64, pp. 66–74. PMLR, New York (2016)

    Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Pfisterer, F., Coors, S., Thomas, J., Bischl, B.: Multi-objective automatic machine learning with autoxgboostmc (2019). arXiv preprint arXiv:1908.10796

  23. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets (2019). CoRR abs/1903.02460, http://arxiv.org/abs/1903.02460

  24. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP (2018)

    Google Scholar 

  25. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. IEEE (2009)

    Google Scholar 

  26. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 847–855. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2487575.2487629

  27. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717 (2017)

    Google Scholar 

  28. Wever, M.D., Mohr, F., Hüllermeier, E.: Ml-plan for unlimited-length machine learning pipelines. In: ICML 2018 AutoML Workshop (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Liuliakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liuliakov, A., Hammer, B. (2021). AutoML Technologies for the Identification of Sparse Models. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91608-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91607-7

  • Online ISBN: 978-3-030-91608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics