Skip to main content

How to Generate Synthetic Paintings to Improve Art Style Classification

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

Indexing artwork is not only a tedious job; it is an impossible task to complete manually given the amount of online art. In any case, the automatic classification of art styles is also a challenge due to the relative lack of labeled data and the complexity of the subject matter. This complexity means that common data augmentation techniques may not generate useful data; in fact, they may degrade performance in practice. In this paper, we use Generative Adversarial Networks for data augmentation so as to improve the accuracy of an art style classifier, showing that we can improve performance of EfficientNet B0, a state of art classifier. To achieve this result, we introduce Class-by-Class Performance Analysis; we also present a modified version of the SAGAN training configuration that allows better control against mode collapse and vanishing gradient in the context of artwork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This feeling can be found in articles on the study of art: https://www.artsy.net/article/alina-cohen-art-movements-matter.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv (2017)

    Google Scholar 

  2. Arora, R.S., Elgammal, A.: Towards automated classification of fine-art painting style: a comparative study. In: Proceedings - International Conference on Pattern Recognition, pp. 3541–3544 (2012)

    Google Scholar 

  3. Bar, Y., Levy, N., Wolf, L.: Classification of artistic styles using binarized features derived from a deep neural network. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 71–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_5

    Chapter  Google Scholar 

  4. Bianco, S., Mazzini, D., Napoletano, P., Schettini, R.: Multitask painting categorization by deep multibranch neural network. Expert Syst. Appl. 135, 90–101 (2019). https://doi.org/10.1016/j.eswa.2019.05.036

    Article  Google Scholar 

  5. Brock, A., Donahuey, J., Simonyany, K.: Large scale gan training for high fidelity natural image synthesis, pp. 1–35 (2018). arXiv

    Google Scholar 

  6. Cetinic, E., Lipic, T., Grgic, S.: Fine-tuning convolutional neural networks for fine art classification. Expert Syst. Appl. 114, 107–118 (2018). https://doi.org/10.1016/j.eswa.2018.07.026

    Article  Google Scholar 

  7. Chen, L., Yang, J.: Recognizing the style of visual arts via adaptive cross-layer correlation. In: MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia, pp. 2459–2467 (2019). https://doi.org/10.1145/3343031.3350977

  8. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: Neural Information Processing Systems, pp. 2180–2188 (2016)

    Google Scholar 

  9. Chu, W.T., Wu, Y.L.: Image style classification based on learnt deep correlation features. IEEE Trans. Multimedia 20, 2491–2502 (2018). https://doi.org/10.1109/TMM.2018.2801718

    Article  Google Scholar 

  10. Condorovici, R.G., Florea, C., Vertan, C.: Automatically classifying paintings with perceptual inspired descriptors. J. Visual Commun. Image Represent. 26, 222–230 (2015). https://doi.org/10.1016/j.jvcir.2014.11.016

    Article  Google Scholar 

  11. Daras, G., Odena, A., Zhang, H., Dimakis, A.G.: Your local gan: designing two dimensional local attention mechanisms for generative models. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 14519–14527 (2020). https://doi.org/10.1109/CVPR42600.2020.01454

  12. Eldeen, N., Khalifa, M.: Detection of coronavirus (covid-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest x-ray dataset (2020). http://www.egyptscience.net

  13. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: Can: creative adversarial networks, generating “art" by learning about styles and deviating from style norms, pp. 1–22 (2017). arXiv

    Google Scholar 

  14. Elgammal, A., Liu, B., Kim, D., Elhoseiny, M., Mazzone, M.: The shape of art history in the eyes of the machine. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 2183–2191 (2018)

    Google Scholar 

  15. Farthing, S.: Tudo sobre Arte. 2 edn. (2018)

    Google Scholar 

  16. Florea, C., Toca, C., Gieseke, F.: Artistic movement recognition by boosted fusion of color structure and topographic description. In: Proceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017, pp. 569–577 (2017). https://doi.org/10.1109/WACV.2017.69

  17. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018). https://doi.org/10.1016/j.neucom.2018.09.013

    Article  Google Scholar 

  18. Gao, X., Tian, Y., Qi, Z.: RPD-GAN: learning to draw realistic paintings with generative adversarial network. IEEE Trans. Image Process. 29, 8706–8720 (2020). https://doi.org/10.1109/TIP.2020.3018856

    Article  Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2014). https://doi.org/10.1145/3422622

    Article  Google Scholar 

  20. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans, vol. 2017-Decem, pp. 5768–5778 (2017)

    Google Scholar 

  21. Han, C., et al.: Synthesizing diverse lung nodules wherever massively: 3d multi-conditional gan-based ct image augmentation for object detection. In: Proceedings - 2019 International Conference on 3D Vision, 3DV 2019, pp. 729–737 (2019). https://doi.org/10.1109/3DV.2019.00085

  22. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  23. Karayev, S., et al.: Recognizing image style. In: BMVC 2014 - Proceedings of the British Machine Vision Conference 2014, pp. 1–20 (2014). https://doi.org/10.5244/c.28.122

  24. Kastan, D.S., Farthing, S.: On Color. Yale University Press, New Haven (2018)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  26. Lecoutre, A., Negrevergne, B., Yger, F.: Recognizing art style automatically in painting with deep learning. J. Mach. Learn. Res. 77, 327–342 (2017)

    Google Scholar 

  27. Mirza, M., Osindero, S.: Conditional generative adversarial nets, pp. 1–7 (2014)

    Google Scholar 

  28. Qin, Z., Liu, Z., Zhu, P., Xue, Y.: A gan-based image synthesis method for skin lesion classification. Comput. Methods Prog. Biomed. 195 (2020). https://doi.org/10.1016/j.cmpb.2020.105568

  29. Rodriguez, C.S., Lech, M., Pirogova, E.: Classification of style in fine-art paintings using transfer learning and weighted image patches. In: 2018, 12th International Conference on Signal Processing and Communication Systems, ICSPCS 2018 - Proceedings, pp. 1–7 (2019). https://doi.org/10.1109/ICSPCS.2018.8631731

  30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  31. Sandoval, C., Pirogova, E., Lech, M.: Two-stage deep learning approach to the classification of fine-art paintings. IEEE Access 7, 41770–41781 (2019)

    Article  Google Scholar 

  32. Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans. Appl. Percept. 7 (2010). https://doi.org/10.1145/1670671.1670672

  33. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)

    Article  Google Scholar 

  34. Suh, S., Lee, H., Lukowicz, P., Lee, Y.O.: Cegan: classification enhancement generative adversarial networks for unraveling data imbalance problems. Neural Netw. 133, 69–86 (2021)

    Article  Google Scholar 

  35. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. In: 36th International Conference on Machine Learning, ICML 2019 2019-June, pp. 10691–10700 (2019)

    Google Scholar 

  36. Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: Proceedings - International Conference on Image Processing, ICIP 2016-August, pp. 3703–3707 (2016). https://doi.org/10.1109/ICIP.2016.7533051

  37. Tomei, M., Cornia, M., Baraldi, L., Cucchiara, R.: Art2real: unfolding the reality of artworks via semantically-aware image-to-image translation, vol. 2019-June, pp. 5842–5852 (2019). https://doi.org/10.1109/CVPR.2019.00600

  38. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: Covidgan: data augmentation using auxiliary classifier GAN for improved covid-19 detection. IEEE Access 8, 91916–91923 (2020). https://doi.org/10.1109/ACCESS.2020.2994762

    Article  Google Scholar 

  39. Wang, Z., She, Q., Ward, T.E.: Generative adversarial networks: a survey and taxonomy, pp. 1–41 (2019). arXiv

    Google Scholar 

  40. Wu, J., Huang, Z., Thoma, J., Acharya, D., Van Gool, L.: Wasserstein divergence for GANs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 673–688. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_40

    Chapter  Google Scholar 

  41. Xue, A.: End-to-end chinese landscape painting creation using generative adversarial networks, pp. 3863–3871 (2020). arXiv

    Google Scholar 

  42. Özal Yıldırım, Pławiak, P., Tan, R.S., Acharya, U.R.: Arrhythmia detection using deep convolutional neural network with long duration ecg signals (2018)

    Google Scholar 

  43. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  44. Zhong, S., Huang, X., Xiao, Z.: Fine-art painting classification via two-channel dual path networks. Int. J. Mach. Learn. Cybern. 11, 137–152 (2020)

    Article  Google Scholar 

  45. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks, vol. 2017-Octob, pp. 2242–2251 (2017)

    Google Scholar 

  46. Zhu, Y., Ji, Y., Zhang, Y., Xu, L., Zhou, A.L., Chan, E.: Machine: the new art connoisseur (2019). http://arxiv.org/abs/1911.10091

Download references

Acknowledgements

This work is part of the Center for Data Science with funding by Itaú Unibanco. The first author thanks Itaú Unibanco for its generosity in authorizing research activities that led to this work. The second author was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant 312180/2018-7, and by São Paulo Research Foundation (FAPESP), grant 2019/07665-4.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, S.P., Cozman, F.G. (2021). How to Generate Synthetic Paintings to Improve Art Style Classification. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics