Skip to main content

I2DE: Improved Interval Differential Evolution for Numerical Constrained Global Optimization

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

Several hybrid approaches have been proposed to solve numerical constrained optimization problems. In this paper we present an Improved Interval Differential Evolution (I2DE) that uses structural information of the instance during the optimization process. We extend the math operations supported by a multi-interval core implementation that allows pruning infeasible solutions by using local consistency techniques and a backtrack-free local search. Furthermore, we propose a reformulation of interval evolutionary mutation strategies. A comprehensive experimental analysis is conducted over COCONUT and CEC2018 competition benchmarks and indicates that the hybridization between metaheuristics and constraint programming significantly improves the quality of the solutions. The experimental evaluation shows that our black-box version of I2DE outperformed several state-of-the-art solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A constraint is said to be ternary if it involves at most three variables.

  2. 2.

    The structure of a CN can be represented by a hypergraph which vertices are the variables and for each constraint there is a hyperedge connecting its respective vertices. Therefore, a CN is acyclic if its hypergraph is Berge-acyclic [2].

  3. 3.

    LSHADE-IEpsilon [9], \(\varepsilon \)MAgES [11], LSHADE44 [17], UDE [23], IUDE [24], LSHADE+IDE [25] and CAL-SHADE [28].

  4. 4.

    https://www3.ntu.edu.sg/home/EPNSugan/index_files/CEC2018/CEC2018.htm, last accessed 18 Jun 2021.

References

  1. Araya, I., Reyes, V.: Interval branch-and-bound algorithms for optimization and constraint satisfaction: a survey and prospects. J. Glob. Optim. 65(4), 837–866 (2016)

    Article  MathSciNet  Google Scholar 

  2. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd., Oxford (1985)

    Google Scholar 

  3. Brest, J., Maučec, M.S., Bošković, B.: iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1188–1195. IEEE (2016)

    Google Scholar 

  4. Brest, J., Maučec, M.S., Bošković, B.: Single objective real-parameter optimization: Algorithm jSO. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1311–1318. IEEE (2017)

    Google Scholar 

  5. Cassenote, M.R.S., Derenievicz, G.A., Silva, F.: Interval differential evolution using structural information of global optimization problems. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 724–736. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_60

    Chapter  Google Scholar 

  6. Cohen, D., Jeavons, P.: The power of propagation: when gac is enough. Constraints 22, 3–23 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dechter, R., van Beek, P.: Local and global relational consistency. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 240–257. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60299-2_15

    Chapter  Google Scholar 

  8. Derenievicz, G.A., Silva, F.: Epiphytic trees: relational consistency applied to global optimization problems. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 153–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_11

    Chapter  Google Scholar 

  9. Fan, Z., Fang, Y., Li, W., Yuan, Y., Wang, Z., Bian, X.: LSHADE44 with an improved \(\varepsilon \) constraint-handling method for solving constrained single-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  10. Hansen, E., Walster, G.W.: Global optimization using interval analysis. Monographs and textbooks in pure and applied mathematics, New York (2004)

    Google Scholar 

  11. Hellwig, M., Beyer, H.G.: A matrix adaptation evolution strategy for constrained real-parameter optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  12. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 861–872. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30549-1_74

    Chapter  Google Scholar 

  13. Jou, Y.C., Wang, S.Y., Yeh, J.F., Chiang, T.C.: Multi-population modified L-SHADE for single objective bound constrained optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  14. Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swar Evol. Comput. 56, 100693 (2020)

    Google Scholar 

  15. Mackworth, A.K.: On reading sketch maps. In: Proceedings of the Fifth International Joint Conference on Artificial Intelligence, IJCAI 1977, pp. 598–606. MIT, Cambridge, MA (1977)

    Google Scholar 

  16. Moore, R.E.: Interval Analysis. Prentice-Hall Englewood Cliffs, N.J (1966)

    Google Scholar 

  17. Poláková, R.: L-SHADE with competing strategies applied to constrained optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1683–1689. IEEE (2017)

    Google Scholar 

  18. Sallam, K.M., Elsayed, S.M., Chakrabortty, R.K., Ryan, M.J.: Improved multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  19. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39901-8_16

    Chapter  MATH  Google Scholar 

  20. Storn, R., Price, K.: Differential Evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  21. Takahama, T., Sakai, S.: Constrained optimization by the \(\varepsilon \) constrained Differential Evolution with an archive and gradient-based mutation. In: 2010 IEEE Congress on Evolutionary computation, pp. 1–9. IEEE (2010)

    Google Scholar 

  22. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)

    Google Scholar 

  23. Trivedi, A., Sanyal, K., Verma, P., Srinivasan, D.: A unified Differential Evolution algorithm for constrained optimization problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1231–1238. IEEE (2017)

    Google Scholar 

  24. Trivedi, A., Srinivasan, D., Biswas, N.: An improved unified Differential Evolution algorithm for constrained optimization problems. IEEE (2018)

    Google Scholar 

  25. Tvrdík, J., Poláková, R.: A simple framework for constrained problems with application of L-SHADE44 and IDE. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1436–1443. IEEE (2017)

    Google Scholar 

  26. Vanaret, C., Gotteland, J.B., Durand, N., Alliot, J.M.: Preventing premature convergence and proving the optimality in evolutionary algorithms. In: International Conference on Artificial Evolution, pp. 29–40. Springer (2013)

    Google Scholar 

  27. Wu, G., Mallipeddi, R., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. Technical report (2017)

    Google Scholar 

  28. Zamuda, A.: Adaptive constraint handling and success history Differential Evolution for CEC 2017 constrained real-parameter optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2443–2450. IEEE (2017)

    Google Scholar 

  29. Zhang, J., Sanderson, A.C.: JADE: adaptive Differential Evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariane R. S. Cassenote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cassenote, M.R.S., Derenievicz, G.A., Silva, F. (2021). I2DE: Improved Interval Differential Evolution for Numerical Constrained Global Optimization. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics