Skip to main content

A Localization Approach Based on Omnidirectional Vision and Deep Learning

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2020)

Abstract

The present work introduces a study about the use of a deep learning tool to tackle the visual localization. The approach proposed consists in developing a Convolutional Neural Network (CNN) with the aim of addressing the room retrieval task. Additionally, the network can be used to extract holistic descriptors from intermediate layers. Therefore, the localization can be carried out by meas of comparing the holistic descriptor obtained during the localization process with the descriptors obtained during the mapping process, but it can be carried out by using a hierarchical strategy. Concerning the hierarchical localization approach, in previous works, it has been addressed by means of a nearest neighbour search using different layers of information. In the present work, first is addressed a rough step which consists in solving the room retrieval with the CNN and, after that, a nearest neighbour search is carried out by using the holistic descriptors contained in the room selected. Hence, this work evaluates firstly the validity of the holistic descriptors extracted from the CNN and, secondly, evaluates the hierarchical method based on the CNN tool. The experiments to evaluate the validity of the proposed methods are carried out with an indoor dataset with real-operation conditions. The results show that the proposed approach based on deep learning is a robust solution to tackle the visual localization task.

This work has been supported by the Generalitat Valenciana and the FSE through the grants ACIF/2017/146 and ACIF/2018/224, by the Spanish government through the project DPI 2016-78361-R (AEI/FEDER, UE): “Creación de mapas mediante métodos de apariencia visual para la navegación de robots.” and by Generalitat Valenciana through the project AICO/2019/031: “Creación de modelos jerárquicos y localización robusta de robots móviles en entornos sociales”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M.H.B., Oskoei, M.A., Fakharian, A.: Mobile robot navigation using sonar vision algorithm applied to omnidirectional vision. In: 2015 AI & Robotics (IRANOPEN), pp. 1–6. IEEE (2015)

    Google Scholar 

  2. Amorós, F., Payá, L., Marín, J.M., Reinoso, O.: Trajectory estimation and optimization through loop closure detection, using omnidirectional imaging and global-appearance descriptors. Expert Syst. Appl. 102, 273–290 (2018)

    Article  Google Scholar 

  3. Amorós, F., Payá, L., Mayol-Cuevas, W., Jiménez, L.M., Reinoso, O.: Holistic descriptors of omnidirectional color images and their performance in estimation of position and orientation. IEEE Access 8, 81822–81848 (2020)

    Article  Google Scholar 

  4. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)

    Google Scholar 

  5. Arroyo, R., Alcantarilla, P.F., Bergasa, L.M., Romera, E.: Fusion and binarization of CNN features for robust topological localization across seasons. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4656–4663, October 2016. https://doi.org/10.1109/IROS.2016.7759685

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Berenguer, Y., Payá, L., Valiente, D., Peidró, A., Reinoso, O.: Relative altitude estimation using omnidirectional imaging and holistic descriptors. Remote Sens. 11(3), 323 (2019)

    Article  Google Scholar 

  8. Cascianelli, S., Costante, G., Bellocchio, E., Valigi, P., Fravolini, M.L., Ciarfuglia, T.A.: Robust visual semi-semantic loop closure detection by a covisibility graph and CNN features. Robot. Auton. Syst. 92, 53–65 (2017). https://doi.org/10.1016/j.robot.2017.03.004. http://www.sciencedirect.com/science/article/pii/S0921889016304900

  9. Cattaneo, D., Vaghi, M., Ballardini, A.L., Fontana, S., Sorrenti, D.G., Burgard, W.: CMRNet: camera to LiDAR-map registration. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1283–1289, October 2019. https://doi.org/10.1109/ITSC.2019.8917470

  10. Cebollada, S., Payá, L., Flores, M., Román, V., Peidró, A., Reinoso, O.: A deep learning tool to solve localization in mobile autonomous robotics. In: ICINCO 2020, 17th International Conference on Informatics in Control, Automation and Robotics, Lieusaint-Paris, France, 7–9 July 2020. Ed. INSTICC (2020)

    Google Scholar 

  11. Cebollada, S., Payá, L., Mayol, W., Reinoso, O.: Evaluation of clustering methods in compression of topological models and visual place recognition using global appearance descriptors. Appl. Sci. 9(3), 377 (2019)

    Article  Google Scholar 

  12. Cebollada, S., Payá, L., Román, V., Reinoso, O.: Hierarchical localization in topological models under varying illumination using holistic visual descriptors. IEEE Access 7, 49580–49595 (2019). https://doi.org/10.1109/ACCESS.2019.2910581

    Article  Google Scholar 

  13. Cebollada, S., Payá, L., Valiente, D., Jiang, X., Reinoso, O.: An evaluation between global appearance descriptors based on analytic methods and deep learning techniques for localization in autonomous mobile robots. In: ICINCO 2019, 16th International Conference on Informatics in Control, Automation and Robotics, Prague, Czech Republic, 29–31 July 2019, pp. 284–291. Ed. INSTICC (2019)

    Google Scholar 

  14. Chaves, D., Ruiz-Sarmiento, J.R., Petkov, N., Gonzalez-Jimenez, J.: Integration of CNN into a robotic architecture to build semantic maps of indoor environments. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 313–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_27

    Chapter  Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, vol. II, pp. 886–893 (2005)

    Google Scholar 

  16. Do, H.N., Choi, J., Young Lim, C., Maiti, T.: Appearance-based localization of mobile robots using group lasso regression. J. Dyn. Syst. Meas. Control 140(9), 091016 (2018)

    Article  Google Scholar 

  17. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  18. Dymczyk, M., Gilitschenski, I., Nieto, J., Lynen, S., Zeisl, B., Siegwart, R.: LandmarkBoost: efficient visualcontext classifiers for robust localization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 677–684, October 2018. https://doi.org/10.1109/IROS.2018.8594100

  19. Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., Scaramuzza, D.: Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. J. Field Robot. 33(4), 431–450 (2016)

    Article  Google Scholar 

  20. Filliat, D., Meyer, J.A.: Map-based navigation in mobile robots: I. A review of localization strategies. Cogn. Syst. Res. 4(4), 243–282 (2003). https://doi.org/10.1016/S1389-0417(03)00008-1. http://www.sciencedirect.com/science/article/pii/S1389041703000081

  21. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 513–520 (2011)

    Google Scholar 

  22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  23. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  24. Guo, J., Gould, S.: Deep CNN ensemble with data augmentation for object detection. arXiv preprint arXiv:1506.07224 (2015)

  25. Han, D., Liu, Q., Fan, W.: A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 95, 43–56 (2018)

    Article  Google Scholar 

  26. Holliday, A., Dudek, G.: Scale-robust localization using general object landmarks. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1688–1694, October 2018. https://doi.org/10.1109/IROS.2018.8594011

  27. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2938–2946, December 2015. https://doi.org/10.1109/ICCV.2015.336

  28. Korrapati, H., Mezouar, Y.: Multi-resolution map building and loop closure with omnidirectional images. Auton. Robot. 41(4), 967–987 (2016). https://doi.org/10.1007/s10514-016-9560-6

    Article  Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  30. Kunii, Y., Kovacs, G., Hoshi, N.: Mobile robot navigation in natural environments using robust object tracking. In: 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp. 1747–1752. IEEE (2017)

    Google Scholar 

  31. Li, R., Liu, Q., Gui, J., Gu, D., Hu, H.: Indoor relocalization in challenging environments with dual-stream convolutional neural networks. IEEE Trans. Autom. Sci. Eng. 15(2), 651–662 (2018). https://doi.org/10.1109/TASE.2017.2664920

    Article  Google Scholar 

  32. Liu, R., Zhang, J., Yin, K., Pan, Z., Lin, R., Chen, S.: Absolute orientation and localization estimation from an omnidirectional image. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11013, pp. 309–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97310-4_35

    Chapter  Google Scholar 

  33. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15(1), 3221–3245 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Mancini, M., Bulò, S.R., Ricci, E., Caputo, B.: Learning deep NBNN representations for robust place categorization. IEEE Robot. Autom. Lett. 2(3), 1794–1801 (2017)

    Article  Google Scholar 

  35. Meng, L., Chen, J., Tung, F., Little, J.J., Valentin, J., de Silva, C.W.: Backtracking regression forests for accurate camera relocalization. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6886–6893, September 2017. https://doi.org/10.1109/IROS.2017.8206611

  36. Moolan-Feroze, O., Calway, A.: Predicting out-of-view feature points for model-based camera pose estimation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 82–88 (2018). https://doi.org/10.1109/IROS.2018.8594297

  37. Murillo, A.C., Singh, G., Kosecká, J., Guerrero, J.J.: Localization in urban environments using a panoramic gist descriptor. IEEE Trans. Rob. 29(1), 146–160 (2013)

    Article  Google Scholar 

  38. Ngiam, J., Chen, Z., Koh, P.W., Ng, A.Y.: Learning deep energy models (2011)

    Google Scholar 

  39. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  40. Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Progr. Brain Res.: Spec. Issue Vis. Percept. 155, 23–36 (2006)

    Article  Google Scholar 

  41. Payá, L., Peidró, A., Amorós, F., Valiente, D., Reinoso, O.: Modeling environments hierarchically with omnidirectional imaging and global-appearance descriptors. Remote Sens. 10(4), 522 (2018)

    Article  Google Scholar 

  42. Payá, L., Reinoso, O., Berenguer, Y., Úbeda, D.: Using omnidirectional vision to create a model of the environment: a comparative evaluation of global-appearance descriptors. J. Sens. 2016 (2016). Article ID 1209507

    Google Scholar 

  43. Payá, L., Gil, A., Reinoso, O.: A state-of-the-art review on mapping and localization of mobile robots using omnidirectional vision sensors. J. Sens. 2017, 1–21 (2017)

    Article  Google Scholar 

  44. Pronobis, A., Caputo, B.: COLD: COsy localization database. Int. J. Robot. Res. (IJRR) 28(5), 588–594 (2009). https://doi.org/10.1177/0278364909103912. http://www.pronobis.pro/publications/pronobis2009ijrr

  45. Reinoso, O., Payá, L.: Special issue on visual sensors. Sensors 20(3) (2020). https://doi.org/10.3390/s20030910. https://www.mdpi.com/1424-8220/20/3/910

  46. Reinoso, O., Payá, L.: Special issue on mobile robots navigation. Appl. Sci. 10(4) (2020). https://doi.org/10.3390/app10041317. https://www.mdpi.com/2076-3417/10/4/1317

  47. Rituerto, A., Murillo, A.C., Guerrero, J.: Semantic labeling for indoor topological mapping using a wearable catadioptric system. Robot. Auton. Syst. 62(5), 685–695 (2014)

    Article  Google Scholar 

  48. Román, V., Payá, L., Cebollada, S., Reinoso, Ó.: Creating incremental models of indoor environments through omnidirectional imaging. Appl. Sci. 10(18), 6480 (2020)

    Article  Google Scholar 

  49. Schalkoff, R.J.: Artificial Intelligence: An Engineering Approach. McGraw-Hill, New York (1990)

    Google Scholar 

  50. Singh, M.K., Parhi, D.R.: Path optimisation of a mobile robot using an artificial neural network controller. Int. J. Syst. Sci. 42(1), 107–120 (2011)

    Article  MathSciNet  Google Scholar 

  51. Sinha, H., Patrikar, J., Dhekane, E.G., Pandey, G., Kothari, M.: Convolutional neural network based sensors for mobile robot relocalization. In: 2018 23rd International Conference on Methods Models in Automation Robotics (MMAR), pp. 774–779, August 2018. https://doi.org/10.1109/MMAR.2018.8485921

  52. Sommer, K., Kim, K., Kim, Y., Jo, S.: Towards accurate kidnap resolution through deep learning. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 502–506, June 2017. https://doi.org/10.1109/URAI.2017.7992654

  53. Su, Z., Zhou, X., Cheng, T., Zhang, H., Xu, B., Chen, W.: Global localization of a mobile robot using lidar and visual features. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2377–2383. IEEE (2017)

    Google Scholar 

  54. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  55. Ullah, M.M., Pronobis, A., Caputo, B., Luo, J., Jensfelt, P.: The cold database. Technical report, Idiap (2007)

    Google Scholar 

  56. Unicomb, J., Ranasinghe, R., Dantanarayana, L., Dissanayake, G.: A monocular indoor localiser based on an extended kalman filter and edge images from a convolutional neural network. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9, October 2018. https://doi.org/10.1109/IROS.2018.8594337

  57. Vyborny, C.J., Giger, M.L.: Computer vision and artificial intelligence in mammography. AJR Am. J. Roentgenol. 162(3), 699–708 (1994)

    Article  Google Scholar 

  58. Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Commun. ACM 54(2), 60–71 (2011)

    Article  Google Scholar 

  59. Weinzaepfel, P., Csurka, G., Cabon, Y., Humenberger, M.: Visual localization by learning objects-of-interest dense match regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5627–5636, June 2019. https://doi.org/10.1109/CVPR.2019.00578

  60. Wozniak, P., Afrisal, H., Esparza, R.G., Kwolek, B.: Scene recognition for indoor localization of mobile robots using deep CNN. In: Chmielewski, L.J., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A.M., Petkov, N. (eds.) ICCVG 2018. LNCS, vol. 11114, pp. 137–147. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00692-1_13

    Chapter  Google Scholar 

  61. Xu, S., Chou, W., Dong, H.: A robust indoor localization system integrating visual localization aided by CNN-based image retrieval with Monte Carlo localization. Sensors 19(2), 249 (2019)

    Article  Google Scholar 

  62. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Cebollada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cebollada, S., Payá, L., Flores, M., Román, V., Peidró, A., Reinoso, O. (2022). A Localization Approach Based on Omnidirectional Vision and Deep Learning. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds) Informatics in Control, Automation and Robotics. ICINCO 2020. Lecture Notes in Electrical Engineering, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-030-92442-3_13

Download citation

Publish with us

Policies and ethics