Skip to main content

Issuer-Hiding Attribute-Based Credentials

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13099))

Included in the following conference series:

Abstract

Attribute-based credential systems enable users to authenticate in a privacy-preserving manner. However, in such schemes verifying a user’s credential requires knowledge of the issuer’s public key, which by itself might already reveal private information about the user.

In this paper, we tackle this problem by introducing the notion of issuer-hiding attribute-based credential systems. In such a system, the verifier can define a set of acceptable issuers in an ad-hoc manner, and the user can then prove that her credential was issued by one of the accepted issuers – without revealing which one. We then provide a generic construction, as well as a concrete instantiation based on Groth’s structure preserving signature scheme (ASIACRYPT’15) and simulation-sound extractable NIZK, for which we also provide concrete benchmarks in order to prove its practicability.

The online complexity of all constructions is independent of the number of acceptable verifiers, which makes it also suitable for highly federated scenarios.

K. Samelin—Independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/.

  2. 2.

    https://decentralized-id.com/government/europe/eSSIF/.

  3. 3.

    Code available at https://github.com/cryptimeleon/issuer-hiding-cred.

References

  1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_20

    Chapter  Google Scholar 

  2. Abraham, A., Hörandner, F., Omolola, O., Ramacher, S.: Privacy-preserving eID derivation for self-sovereign identity systems. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) ICICS 2019. LNCS, vol. 11999, pp. 307–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41579-2_18

    Chapter  Google Scholar 

  3. Abraham, A., Theuermann, K., Kirchengast, E.: Qualified eID derivation into a distributed ledger based iDM system. In: TrustCom/BigDataSE (2018)

    Google Scholar 

  4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_7

    Chapter  Google Scholar 

  5. Bemmann, K., et al.: Fully-featured anonymous credentials with reputation system. In: ARES (2018)

    Google Scholar 

  6. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_38

    Chapter  Google Scholar 

  7. Blömer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 221–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_12

    Chapter  Google Scholar 

  8. Blömer, J., Bobolz, J., Diemert, D., Eidens, F.: Updatable anonymous credentials and applications to incentive systems. In: ACM CCS 2019 (2019)

    Google Scholar 

  9. Bobolz, J., Eidens, F., Heitjohann, R., Fell, J.: Cryptimeleon: a library for fast prototyping of privacy-preserving cryptographic schemes. IACR ePrint (2021)

    Google Scholar 

  10. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_7

    Chapter  Google Scholar 

  11. Brands, S.: Rethinking public key infrastructure and digital certificates - building in privacy. Ph.D. thesis, Eindhoven Institute of Technology (1999)

    Google Scholar 

  12. Camenisch, J.: Concepts around privacy-preserving attribute-based credentials. In: Hansen, M., Hoepman, J.-H., Leenes, R., Whitehouse, D. (eds.) Privacy and Identity 2013. IAICT, vol. 421, pp. 53–63. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55137-6_4

    Chapter  Google Scholar 

  13. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable credentials with attributes and their application to blockchain. In: ACM CCS 2017 (2017)

    Google Scholar 

  14. Camenisch, J., Drijvers, M., Lehmann, A., Neven, G., Towa, P.: Short threshold dynamic group signatures. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 401–423. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_20

    Chapter  Google Scholar 

  15. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_11

    Chapter  Google Scholar 

  16. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen, M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6_1

    Chapter  Google Scholar 

  17. Camenisch, J., Lehmann, A., Neven, G., Rial, A.: Privacy-preserving auditing for attribute-based credentials. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 109–127. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_7

    Chapter  Google Scholar 

  18. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  19. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

    Chapter  Google Scholar 

  20. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  21. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  22. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix anonymous credential system. In: ACM CCS 2002 (2002)

    Google Scholar 

  23. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_5

    Chapter  Google Scholar 

  24. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–88 (1981)

    Article  Google Scholar 

  25. Chaum, D.: Security without identification: transaction systems to make big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

    Article  Google Scholar 

  26. Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053433

    Chapter  Google Scholar 

  27. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_27

    Chapter  Google Scholar 

  28. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interaction (extended abstract). In: 33rd FOCS (1992)

    Google Scholar 

  29. Derler, D., Krenn, S., Samelin, K., Slamanig, D.: Fully collision-resistant chameleon-hashes from simpler and post-quantum assumptions. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 427–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_21

    Chapter  Google Scholar 

  30. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_35

    Chapter  MATH  Google Scholar 

  31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  32. de Fuentes, J.M., González-Manzano, L., Serna-Olvera, J., Veseli, F.: Assessment of attribute-based credentials for privacy-preserving road traffic services in smart cities. Pers. Ubiquitous Comput. 21(5), 869–891 (2017)

    Article  Google Scholar 

  33. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS 2014 (2014)

    Google Scholar 

  34. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  Google Scholar 

  35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    Chapter  Google Scholar 

  36. Groth, J.: Efficient fully structure-preserving signatures for large messages. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 239–259. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_11

    Chapter  Google Scholar 

  37. Haböck, U., Krenn, S.: Breaking and fixing anonymous credentials for the cloud. In: Mu, Y., Deng, R.H., Huang, X. (eds.) CANS 2019. LNCS, vol. 11829, pp. 249–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31578-8_14

    Chapter  MATH  Google Scholar 

  38. Khovratovich, D., Law, J.: Sovrin: digital signatures in the blockchain area (2016). https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

  39. Krenn, S., Samelin, K., Striecks, C.: Practical group-signatures with privacy-friendly openings. In: ARES (2019)

    Google Scholar 

  40. Lipmaa, H.: On Diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_26

    Chapter  Google Scholar 

  41. Moreno, R.T., et al.: The OLYMPUS architecture - oblivious identity management for private user-friendly services. Sensors 20(3), 945 (2020)

    Article  Google Scholar 

  42. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_26

    Chapter  Google Scholar 

  43. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 (revision2). Technical report, Microsoft Corporation (2013)

    Google Scholar 

  44. Ringers, S., Verheul, E., Hoepman, J.-H.: An efficient self-blindable attribute-based credential scheme. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_1

    Chapter  Google Scholar 

  45. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th FOCS (1999)

    Google Scholar 

  46. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    Article  Google Scholar 

  47. Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut: threshold issuance selective disclosure credentials with applications to distributed ledgers. In: NDSS 2019 (2019)

    Google Scholar 

  48. Yang, R., Au, M.H., Xu, Q., Yu, Z.: Decentralized blacklistable anonymous credentials with reputation. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 720–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_41

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was in parts supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871473 (KRAKEN) and 830929 (CyberSec4Europe), and by the German Research Foundation (DFG) within the Collaborative Research Centre On-The-Fly Computing (GZ: SFB 901/3) under the project number 160364472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Krenn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bobolz, J., Eidens, F., Krenn, S., Ramacher, S., Samelin, K. (2021). Issuer-Hiding Attribute-Based Credentials. In: Conti, M., Stevens, M., Krenn, S. (eds) Cryptology and Network Security. CANS 2021. Lecture Notes in Computer Science(), vol 13099. Springer, Cham. https://doi.org/10.1007/978-3-030-92548-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92548-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92547-5

  • Online ISBN: 978-3-030-92548-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics