Skip to main content

Conditional Adversarial Debiasing: Towards Learning Unbiased Classifiers from Biased Data

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2021)

Abstract

Bias in classifiers is a severe issue of modern deep learning methods, especially for their application in safety- and security-critical areas. Often, the bias of a classifier is a direct consequence of a bias in the training set, frequently caused by the co-occurrence of relevant features and irrelevant ones. To mitigate this issue, we require learning algorithms that prevent the propagation of known bias from the dataset into the classifier. We present a novel adversarial debiasing method, which addresses a feature of which we know that it is spuriously connected to the labels of training images but statistically independent of the labels for test images. The debiasing stops the classifier from falsly identifying this irrelevant feature as important. Irrelevant features co-occur with important features in a wide range of bias-related problems for many computer vision tasks, such as automatic skin cancer detection or driver assistance. We argue by a mathematical proof that our approach is superior to existing techniques for the abovementioned bias. Our experiments show that our approach performs better than the state-of-the-art on a well-known benchmark dataset with real-world images of cats and dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli, E., et al.: Representation learning with statistical independence to mitigate bias. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2513–2523 (2021)

    Google Scholar 

  2. Ali Shah, S.A., Uddin, I., Aziz, F., Ahmad, S., Al-Khasawneh, M.A., Sharaf, M.: An enhanced deep neural network for predicting workplace absenteeism. Complexity 2020, 1–12 (2020)

    Google Scholar 

  3. Alvi, M., Zisserman, A., Nellåker, C.: Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 556–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_34

    Chapter  Google Scholar 

  4. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. PropPblica (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

  5. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Fukumizu, K., Gretton, A., Sun, X., Schölkopf, B.: Kernel measures of conditional dependence. In: Advances in Neural Information Processing Systems, pp. 489–496 (2008)

    Google Scholar 

  8. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A kernel statistical test of independence. In: Advances in Neural Information Processing Systems, pp. 585–592 (2008)

    Google Scholar 

  9. Hartmann, B., Raste, T., Kretschmann, M., Amthor, M., Schneider, F., Denzler, J.: Aquaplaning - a potential hazard also for automated driving. In: ITS Automotive Nord e.V. (Hrsg.) Braunschweig (2018)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: training deep neural networks with biased data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9012–9020 (2019)

    Google Scholar 

  12. Lakkaraju, H., Kamar, E., Caruana, R., Horvitz, E.: Discovering blind spots of predictive models: representations and policies for guided exploration. arXiv preprint arXiv:1610.09064 (2016)

  13. Muckatira, S.: Properties of winning tickets on skin lesion classification. arXiv preprint arXiv:2008.12141 (2020)

  14. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  15. Perez, F., Vasconcelos, C., Avila, S., Valle, E.: Data augmentation for skin lesion analysis. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 303–311. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_33

    Chapter  Google Scholar 

  16. Reimers, C., Requena-Mesa, C.: Deep learning-an opportunity and a challenge for geo-and astrophysics. In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, pp. 251–265. Elsevier (2020)

    Google Scholar 

  17. Reimers, C., Runge, J., Denzler, J.: Determining the relevance of features for deep neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 330–346. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_20

    Chapter  Google Scholar 

  18. Sarmanov, O.V.: The maximum correlation coefficient (symmetrical case). In: Doklady Akademii Nauk, vol. 120, pp. 715–718. Russian Academy of Sciences (1958)

    Google Scholar 

  19. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528. IEEE (2011)

    Google Scholar 

  20. Tschandl, P., et al.: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 20(7), 938–947 (2019)

    Article  Google Scholar 

  21. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. data 5, 180161 (2018)

    Article  Google Scholar 

  22. Wang, A., Narayanan, A., Russakovsky, O.: REVISE: a tool for measuring and mitigating bias in visual datasets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 733–751. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_43

    Chapter  Google Scholar 

  23. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reimers .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 170 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reimers, C., Bodesheim, P., Runge, J., Denzler, J. (2021). Conditional Adversarial Debiasing: Towards Learning Unbiased Classifiers from Biased Data. In: Bauckhage, C., Gall, J., Schwing, A. (eds) Pattern Recognition. DAGM GCPR 2021. Lecture Notes in Computer Science(), vol 13024. Springer, Cham. https://doi.org/10.1007/978-3-030-92659-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92659-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92658-8

  • Online ISBN: 978-3-030-92659-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics