Skip to main content

Object Goal Visual Navigation Using Semantic Spatial Relationships

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

Abstract

The target-driven visual navigation is a popular learning-based method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at adapting to unseen environments. In this paper, a navigation method based on Semantic Spatial Relationships (SSR) is proposed and is shown to have more reliable performance when dealing with novel conditions. The construction of joint semantic hierarchical feature vector allows for learning implicit relationship between current observation and target objects, which benefits from construction of prior knowledge graph and semantic space. This differs from the traditional target driven methods, which integrate the visual input vector directly into the reinforcement learning path planning module. Moreover, the proposed method takes both local and global features of observed image into consideration and is thus less conservative and more robust in regards to random scenes. An additional analysis indicates that the proposed SSR performs well on classical metrics. The effectiveness of the proposed SSR model is demonstrated comparing with state-of-the-art methods in unknown scenes.

Supported by National Natural Science Foundation of China \(No. 62073004\), Science and Technology Plan of Shenzhen \(No. JCYJ20190808182209321\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P., et al.: On evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757 (2018)

  2. Chaplot, D.S., Gandhi, D.P., Gupta, A., Salakhutdinov, R.R.: Object goal navigation using goal-oriented semantic exploration. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–734. IEEE (2005)

    Google Scholar 

  6. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and planning for visual navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2017)

    Google Scholar 

  7. Hamrick, J.B., et al.: Relational inductive bias for physical construction in humans and machines. arXiv preprint arXiv:1806.01203 (2018)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Kawamoto, T., Tsubaki, M., Obuchi, T.: Mean-field theory of graph neural networks in graph partitioning. J. Stat. Mech: Theory Exp. 2019(12), 124007 (2019)

    Article  MathSciNet  Google Scholar 

  10. Kim, D., Kim, S., Kwak, N.: Textbook question answering with multi-modal context graph understanding and self-supervised open-set comprehension. arXiv preprint arXiv:1811.00232 (2018)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kolve, E., et al.: AI2-THOR: an interactive 3D environment for visual AI. arXiv preprint arXiv:1712.05474 (2017)

  13. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  14. Lu, Y., Chen, Y., Zhao, D., Li, D.: MGRL: Graph neural network based inference in a Markov network with reinforcement learning for visual navigation. Neurocomputing 421, 140–150 (2021)

    Article  Google Scholar 

  15. Martins, R., Bersan, D., Campos, M.F., Nascimento, E.R.: Extending maps with semantic and contextual object information for robot navigation: a learning-based framework using visual and depth cues. J. Intell. Robot. Syst. 99(3), 555–569 (2020)

    Article  Google Scholar 

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  17. Mirowski, P., et al.: Learning to navigate in cities without a map. arXiv preprint arXiv:1804.00168 (2018)

  18. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937. PMLR (2016)

    Google Scholar 

  19. Mousavian, A., Toshev, A., Fišer, M., Košecká, J., Wahid, A., Davidson, J.: Visual representations for semantic target driven navigation. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8846–8852. IEEE (2019)

    Google Scholar 

  20. Pathak, D., et al.: Zero-shot visual imitation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2050–2053 (2018)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  22. Wen, S., Zhao, Y., Yuan, X., Wang, Z., Zhang, D., Manfredi, L.: Path planning for active slam based on deep reinforcement learning under unknown environments. Intell. Serv. Robot. 13, 263–272 (2020)

    Article  Google Scholar 

  23. Wijmans, E., et al.: DD-PPO: learning near-perfect point goal navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357 (2019)

  24. Wortsman, M., Ehsani, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Learning to learn how to learn: Self-adaptive visual navigation using meta-learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6750–6759 (2019)

    Google Scholar 

  25. Wu, Q., Xu, K., Wang, J., Xu, M., Gong, X., Manocha, D.: Reinforcement learning-based visual navigation with information-theoretic regularization. IEEE Robot. Autom. Lett. 6(2), 731–738 (2021)

    Article  Google Scholar 

  26. Yang, W., Wang, X., Farhadi, A., Gupta, A., Mottaghi, R.: Visual semantic navigation using scene priors. arXiv preprint arXiv:1810.06543 (2018)

  27. Yu, J., Su, Y., Liao, Y.: The path planning of mobile robot by neural networks and hierarchical reinforcement learning. Front. Neurorobotics 14, 63 (2020)

    Article  Google Scholar 

  28. Zhang, Y., Guo, Z., Lu, W.: Attention guided graph convolutional networks for relation extraction. arXiv preprint arXiv:1906.07510 (2019)

  29. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Lu, Z., Wang, T., Huang, W., Liu, H. (2021). Object Goal Visual Navigation Using Semantic Spatial Relationships. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics