Skip to main content

Unlocking the Potential of MAPPO with Asynchronous Optimization

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13070))

Included in the following conference series:

  • 1557 Accesses

Abstract

It almost reaches a consensus that off-policy algorithms dominated research benchmarks of multi-agent reinforcement learning, while recent work [34] demonstrates that on-policy MARL algorithm, Multi-Agent Proximal Policy Optimization (MAPPO), can also attain comparable performance. In this paper, we propose a training framework based on MAPPO, named async-MAPPO, which supports scalable asynchronous training. We further re-examine async-MAPPO in StarCraftII micromanagement domain and obtain state-of-the-art performances on several hard and super-hard maps. Finally, we analyze three experimental phenomena and provide hypotheses behind the performance improvement of async-MAPPO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/marlbenchmark/on-policy.

  2. 2.

    Referred to as ppo_epoch in [34].

References

  1. Baker, B., et al.: Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528 (2019)

  2. Bard, N., et al.: The Hanabi challenge: a new frontier for AI research. Artif. Intell. 280, 103216 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  4. Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., Michalski, M.: Seed rl: Scalable and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591 (2019)

  5. Espeholt, L., et al.: Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In: International Conference on Machine Learning, pp. 1407–1416. PMLR (2018)

    Google Scholar 

  6. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  7. Foerster, J.N., Assael, Y.M., De Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. arXiv preprint arXiv:1605.06676 (2016)

  8. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71682-4_5

    Chapter  Google Scholar 

  9. Harris, C.R., et al.: Array programming with numPy. Nature 585(7825), 357–362 (2020)

    Article  Google Scholar 

  10. Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., van Hasselt, H.: Multi-task deep reinforcement learning with popart. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3796–3803 (2019)

    Google Scholar 

  11. Horgan, D., et al.: Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933 (2018)

  12. Hu, H., Foerster, J.N.: Simplified action decoder for deep multi-agent reinforcement learning. arXiv preprint arXiv:1912.02288 (2019)

  13. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., Dabney, W.: Recurrent experience replay in distributed reinforcement learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  14. Leibo, J.Z., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037 (2017)

  15. Li, S., et al.: Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 (2020)

  16. Li, Y., Schuurmans, D.: MapReduce for parallel reinforcement learning. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS (LNAI), vol. 7188, pp. 309–320. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29946-9_30

    Chapter  Google Scholar 

  17. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  18. Mordatch, I., Abbeel, P.: Emergence of grounded compositional language in multi-agent populations. arXiv preprint arXiv:1703.04908 (2017)

  19. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8

  20. OpenAI: Openai five. https://blog.openai.com/openai-five/ (2018)

  21. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

  22. Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., Koltun, V.: Sample factory: Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement learning. In: International Conference on Machine Learning, pp. 7652–7662. PMLR (2020)

    Google Scholar 

  23. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.: Qmix: monotonic value function factorisation for deep multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 4295–4304. PMLR (2018)

    Google Scholar 

  24. Samvelyan, M., et al.: The StarCraft Multi-Agent Challenge. CoRR abs/1902.04043 (2019)

    Google Scholar 

  25. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

  26. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295 (2016)

  27. Son, K., Kim, D., Kang, W.J., Hostallero, D.E., Yi, Y.: Qtran: learning to factorize with transformation for cooperative multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 5887–5896. PMLR (2019)

    Google Scholar 

  28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  29. Vinyals, O., et al.: Grandmaster level in StarCraft ii using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

    Article  Google Scholar 

  30. Wang, J., Ren, Z., Liu, T., Yu, Y., Zhang, C.: Qplex: Duplex dueling multi-agent q-learning. arXiv preprint arXiv:2008.01062 (2020)

  31. Wang, T., Dong, H., Lesser, V., Zhang, C.: Roma: multi-agent reinforcement learning with emergent roles. In: Proceedings of the 37th International Conference on Machine Learning (2020)

    Google Scholar 

  32. Wang, T., Gupta, T., Mahajan, A., Peng, B., Whiteson, S., Zhang, C.: Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523 (2020)

  33. Ye, D., et al.: Towards playing full moba games with deep reinforcement learning. arXiv preprint arXiv:2011.12692 (2020)

  34. Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., Wu, Y.: The surprising effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, W., Yu, C., Li, Y., Wu, Y. (2021). Unlocking the Potential of MAPPO with Asynchronous Optimization. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13070. Springer, Cham. https://doi.org/10.1007/978-3-030-93049-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93049-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93048-6

  • Online ISBN: 978-3-030-93049-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics