Skip to main content

Krylov-Subspace Methods for Quadratic Hypersurfaces: A Grossone–based Perspective

  • Chapter
  • First Online:
Numerical Infinities and Infinitesimals in Optimization

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 43))

  • 291 Accesses

Abstract

We study the role of the recently introduced infinite number grossone, to deal with two renowned Krylov-subspace methods for symmetric (possibly indefinite) linear systems. We preliminarily explore the relationship between the Conjugate Gradient (CG) method and the Lanczos process, along with their specific role of yielding tridiagonal matrices which retain large information on the original linear system matrix. Then, we show that on one hand there is not immediate evidence of an advantage from embedding grossone within the Lanczos process. On the other hand, coupling the CG with grossone shows clear theoretical improvements. Furthermore, reformulating the CG iteration through a grossone-based framework allows to encompass also a certain number of Krylov-subspace methods relying on conjugacy among vectors. The last generalization remarkably justifies the use of a grossone-based reformulation of the CG to solve also indefinite linear systems. Finally, pairing the CG with the algebra of grossone easily provides relevant geometric properties of quadratic hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More correctly, we urge to remark that the expressions (33) are obtained neglecting in the quantity \(\alpha _{k+1}\) the infinitesimal terms, i.e. those terms containing negative powers of \(s\textcircled {1}\), that are indeed negligibly small due to the degenerate Step k in CG\(_{\textcircled {1}}\).

References

  1. Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterr. J. Math. 17(3) (2020)

    Google Scholar 

  2. Astorino, A., Fuduli, A.: Spherical separation with infinitely far center. Soft Comput. 24, 17751–17759 (2020)

    Article  Google Scholar 

  3. Chandra, R.: Conjugate gradient methods for partial differential equations. Ph.D. thesis, Yale University, New Haven (1978)

    Google Scholar 

  4. Cococcioni, M., Fiaschi, L.: The Big-M method with the numerical infinite M. Optim. Lett. 15(7) (2021)

    Google Scholar 

  5. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  6. Curtis, F., Robinson, D.: Exploiting negative curvature in deterministic and stochastic optimization. Math. Program. 176, 69–94 (1919)

    Article  MathSciNet  Google Scholar 

  7. D’Alotto, L.: Infinite games on finite graphs using grossone. Soft Comput. 55, 143–158 (2020)

    MathSciNet  MATH  Google Scholar 

  8. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  9. De Leone, R.: Nonlinear programming and grossone: quadratic programming and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)

    MATH  Google Scholar 

  10. De Leone, R., Egidi, N., Fatone, L.: The use of grossone in elastic net regularization and sparse support vector machines. Soft Comput. 24, 17669–17677 (2020)

    Article  Google Scholar 

  11. De Leone, R., Fasano, G., Roma, M., Sergeyev, Y.D.: Iterative grossone-based computation of negative curvature directions in large-scale optimization. J. Optim. Theory Appl. 186(2), 554–589 (2020)

    Article  MathSciNet  Google Scholar 

  12. De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the conjugate gradient breakdown in nonlinear programming. Comput. Optim. Appl. 71(1), 73–93 (2018)

    Article  MathSciNet  Google Scholar 

  13. Fasano, G.: Planar-CG methods and matrix tridiagonalization in large scale unconstrained optimization. In: Di Pillo, G., Murli, A. (eds.) In: High Performance Algorithms and Software for Nonlinear Optimization. Kluwer Academic Publishers, New York (2003)

    Google Scholar 

  14. Fasano, G.: Conjugate Gradient (CG)-type method for the solution of Newton’s equation within optimization frameworks. Optim. Methods Softw. 19(3–4), 267–290 (2004)

    Article  MathSciNet  Google Scholar 

  15. Fasano, G.: Planar-Conjugate gradient algorithm for large scale unconstrained optimization, part 1: theory. J. Optim. Theory Appl. 125(3), 523–541 (2005)

    Article  MathSciNet  Google Scholar 

  16. Fasano, G.: Planar-Conjugate gradient algorithm for large scale unconstrained optimization, part 2: application. J. Optim. Theory Appl. 125(3), 543–558 (2005)

    Article  MathSciNet  Google Scholar 

  17. Fasano, G.: Lanczos conjugate-gradient method and pseudoinverse computation on indefinite and singular systems. J. Optim. Theory Appl. 132(2), 267–285 (2007)

    Article  MathSciNet  Google Scholar 

  18. Fasano, G.: A framework of conjugate direction methods for symmetric linear systems in optimization. J. Optim. Theory Appl. 164(3), 883–914 (2015)

    Article  MathSciNet  Google Scholar 

  19. Fasano, G., Lucidi, S.: A nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization. Optim. Lett. 3(4), 521–535 (2009)

    Article  MathSciNet  Google Scholar 

  20. Fasano, G., Roma, M.: Iterative computation of negative curvature directions in large scale optimization. Comput. Optim. Appl. 38(1), 81–104 (2007)

    Article  MathSciNet  Google Scholar 

  21. Fiaschi, L., Cococcioni, M.: Numerical asymptotic results in game theory using Sergeyev’s Infinity Computing. Int. J. Unconv. Comput. 14(1) (2018)

    Google Scholar 

  22. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson G.A. (ed.), Proceedings of the Dundee Biennal Conferences on Numerical Analysis. Springer, Berlin Heidelberg New York (1975)

    Google Scholar 

  23. Gaudioso, M., Giallombardo, G., Mukhametzhanov, M.S.: Numerical infinitesimals in a variable metric method for convex nonsmooth optimization. Appl. Math. Comput. 318, 312–320 (2018)

    MATH  Google Scholar 

  24. Gould, N., Lucidi, S., Roma, M., Toint, P.: Exploiting negative curvature directions in linesearch methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000)

    Article  MathSciNet  Google Scholar 

  25. Hestenes, M.: Conjugate Direction Methods in Optimization. Springer, New York, Heidelberg, Berlin (1980)

    Book  Google Scholar 

  26. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  27. Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  28. Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: Computation of higher order Lie derivatives on the Infinity Computer. J. Comput. Appl. Math. 383 (2021)

    Google Scholar 

  29. Lanczos, C.: An iterative method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bureau Stand. 45(4), Research Paper 2133 (1950)

    Google Scholar 

  30. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for Truncated Newton methods in large scale unconstrained optimization. SIAM J. Optim. 8(4), 916–939 (1999)

    Article  MathSciNet  Google Scholar 

  31. Luenberger, D.G.: Hyperbolic Pairs in the method of conjugate gradients. SIAM J. Appl. Math. 17, 1263–1267 (1996)

    Article  MathSciNet  Google Scholar 

  32. Mazzia, F., Sergeyev, Y.D., Iavernaro, F., Amodio, P., Mukhametzhanov, M.S.: Numerical methods for solving ODEs on the Infinity Computer. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) Proceedings of the 2nd International Conferences “Numerical Computations: Theory and Algorithms”, vol. 1776, p. 090033. AIP Publishing, New York (2016)

    Google Scholar 

  33. McCormick, G.: A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13(1), 111–115 (1977)

    Article  MathSciNet  Google Scholar 

  34. Moré, J., Sorensen, D.: On the use of directions of negative curvature in a modified Newton method. Math. Program. 16, 1–20 (1979)

    Article  MathSciNet  Google Scholar 

  35. Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  Google Scholar 

  36. Pepelyshev, A., Zhigljavsky, A.: Discrete uniform and binomial distributions with infinite support. Soft Comput. 24, 17517–17524 (2020)

    Article  Google Scholar 

  37. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS, 2nd ed. (2013)

    Google Scholar 

  38. Sergeyev, Y.D.: Lagrange Lecture: methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 68(2), 95–113 (2010)

    MATH  Google Scholar 

  39. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–585 (2011)

    Article  MathSciNet  Google Scholar 

  40. Sergeyev, Y.D.: Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J. (eds.), Unconventional Computation and Natural Computation: Proceedings of the 14th International Conference UCNC 2015, LNCS, vol. 9252 , pp. 89–106. Springer, New York (2015)

    Google Scholar 

  41. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica nella Società e nella Cultura: Rivista della Unione Matematica Italiana 8(1), 111–147 (2015)

    Google Scholar 

  42. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  43. Sergeyev, Y.D.: Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite. Found. Sci. 24(1) (2019)

    Google Scholar 

  44. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun. Nonlinear Sci. Numer. Simul. 59, 319–330 (2018)

    Article  MathSciNet  Google Scholar 

  45. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Editors of the present volume for their great efforts and constant commitment. The author is also grateful for the support he received by both the National Research Council–Marine Technology Research Institute (CNR-INM), and the National Research Group GNCS (Gruppo Nazionale per il Calcolo Scientifico) within IN\(\delta \)AM, Istituto Nazionale di Alta Matematica, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasano, G. (2022). Krylov-Subspace Methods for Quadratic Hypersurfaces: A Grossone–based Perspective. In: Sergeyev, Y.D., De Leone, R. (eds) Numerical Infinities and Infinitesimals in Optimization. Emergence, Complexity and Computation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-93642-6_4

Download citation

Publish with us

Policies and ethics