Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13131))

Abstract

Computational modelling is becoming a crucial aid to better understand valve physiopathology. It allows experts to gain deeper insights on valve biomechanics and deformation, thus helping in the planning of therapies and assessing the efficacy of cardiovascular devices. However, there is a lack of proper visualization techniques to facilitate the interpretation of simulation results. In this work, Smoothed Particle Hydrodynamics (SPH) was used to model mitral valve regurgitation (MVR) and a common minimally-invasive intervention, an edge-to-edge repair. Furthermore, a flattening visualization of the mitral valve (MV) was implemented to ease the analysis of the obtained in-silico indices in different stages. The obtained results show the relevance of proper planning prior to the edge-to-edge repair procedure, improving the safety and efficacy of the devices, while decreasing the risk of re-intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolidou, E., et al.: Primary mitral valve regurgitation: update and review. Glob. Cardiol. Sci. Pract. 2017(1), e201703 (2017)

    Google Scholar 

  2. Del Forno, B., et al.: Mitral valve regurgitation: a disease with a wide spectrum of therapeutic options. Nat. Rev. Cardiol. 17, 807–827 (2020)

    Article  Google Scholar 

  3. Lau, K.D., Díaz-Zuccarini, V., Scambler, P., Burriesci, G.: Fluid-structure interaction study of the edge-to-edge repair technique on the mitral valve. J. Biomech. 44(13), 2409–2417 (2011)

    Article  Google Scholar 

  4. Avanzini, A.: A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130(3), 0301015 (2008)

    Article  Google Scholar 

  5. Kong, F., Caballero, A., McKay, R., Sun, W.: Finite element analysis of MitraClip procedure on a patient-specific model with functional mitral regurgitation. J. Biomech. 104, 109730 (2020)

    Article  Google Scholar 

  6. Zhang, L., Ademiloye, A., Liew, K.: Meshfree and particle methods in biomechanics: prospects and challenges. Arch. Comput. Meth. Eng. 26, 1547–1576 (2019)

    Article  MathSciNet  Google Scholar 

  7. Lluch, E., et al.: Breaking the state of the heart: meshless model for cardiac mechanics. Biomech. Model. Mechanobiol. 18(6), 1549–1561 (2019). https://doi.org/10.1007/s10237-019-01175-9

    Article  Google Scholar 

  8. Hermida, U., Lluch, E., De Craene, M., Bijnens, B., Morales, H.G.: Aortic valve dynamic modelling with a meshless method. Congreso Anual de la Sociedad Española de Ingeniería Biomédica (2019)

    Google Scholar 

  9. Ros, J., Camara, O., Hermida, U., Bijnens, B., Morales, H.G.: Towards mesh-free patient-specific mitral valve modeling. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 66–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_7

    Chapter  Google Scholar 

  10. Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil-structure interaction. Int. J. Numer. Anal. Meth. Geomech. 38(7), 747–770 (2014)

    Article  Google Scholar 

  11. Seo, S., Min, O.: Axisymmetric SPH simulation of elasto-plastic contact in the low velocity impact. Comput. Phys. Commun. 175, 583–603 (2006)

    Article  MathSciNet  Google Scholar 

  12. Tautz, L., Vellguth, K., Sündermann, S., Degener, F., Wamala, I.: CT segmented mitral valves in open state. Zenodo (2019)

    Google Scholar 

  13. Hisham, M., Mohd, H.: Degenerative vs rigidity on mitral valve leaflet using fluid structure interaction (FSI) model. J. Biomim. Biomater. Biomed. Eng. 26, 60–65 (2016)

    Google Scholar 

  14. Sanfilippo, A., et al.: Papillary muscle traction in mitral valve prolapse: quantitation by two-dimensional echocardiography. J. Am. Coll. Cardiol. 19(3), 564–571 (1992)

    Article  Google Scholar 

  15. Kaiser, A., McQueen, D., Peskin, C.: modelling the mitral valve. Int. J. Numer. Meth. Biomed. Eng. 35(11), e3240 (2019)

    Google Scholar 

  16. Rim, Y., Laing, S., Kee, P., McPherson, D., Kim, H.: Evaluation of mitral valve dynamics. JACC: Imaging 6(2), 263–268 (2013)

    Google Scholar 

  17. Caballero, A., et al.: New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modelling. Sci. Rep. 8, 17306 (2018)

    Article  Google Scholar 

  18. Lichtenberg, N., et al.: Mitral valve flattening and parameter mapping for patient-specific valve diagnosis. Int. J. Comput. Assist. Radiol. Surg. 15(4), 617–627 (2020). https://doi.org/10.1007/s11548-019-02114-w

    Article  Google Scholar 

  19. Zhang, Y., et al.: Mechanical effects of MitraClip on leaflet stress and myocardial strain in functional mitral regurgitation - a finite element modelling study. PLoS ONE 14(10), e0223472 (2019)

    Article  Google Scholar 

  20. Caballero, A., Mao, W., McKay, R., Hahn, R., Sun, W.: A comprehensive engineering analysis of left heart dynamics after MitraClip in a functional mitral regurgitation patient. Front. Physiol. 11, 430 (2020)

    Article  Google Scholar 

  21. Kamakoti, R., Dabiri, Y., Wang, D., Guccione, J., Kassab, G.: Numerical simulations of MitraClip placement: clinical implications. Sci. Rep. 9, 15823 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Casademunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casademunt, P., Camara, O., Bijnens, B., Lluch, È., Morales, H.G. (2022). Valve Flattening with Functional Biomarkers for the Assessment of Mitral Valve Repair. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93722-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93721-8

  • Online ISBN: 978-3-030-93722-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics