Skip to main content

Stress-Strain State of a Double Lap Joint of Circular Form. Axisymmetric Model

  • Conference paper
  • First Online:
Integrated Computer Technologies in Mechanical Engineering - 2021 (ICTM 2021)

Abstract

The problem of axisymmetrical strain of a structure comprising a plate weakened by a circular cutout and two circular patches lap bonded to both sides of the plate was solved. The patches are bonded to the parent plate with the help of a thin adhesive layer working in shear and peeling. The stresses over the adhesive layer thickness are deemed to be distributed evenly. The Kirchhoff-Love hypotheses were assumed for the patches. Due to structural symmetry, the parent plate is not subjected to bending. The problem considered is the generalization of the classical model of the stress state of an adhesive joint of rods to a domain with radial symmetry. The solution was obtained in analytical form. The model problem was solved. Research shows that tangential stresses achieve a maximum at a distance of about the thickness of the adhesive layer from the joint edge. Normal stresses are of the same order as that of the tangential ones. The results obtained were compared with those of finite-element modelling. The comparison demonstrated high accuracy of the suggested model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okafor, A.C., Singh, N., Enemuoh, U.E., Rao, S.V.: Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels. Compos. Struct. 71(2), 258–270 (2005). https://doi.org/10.1016/j.compstruct.2005.02.023

    Article  Google Scholar 

  2. Tomblin, J.S., Salah, L., Welch, J.M., Borgman, M.D.: Bonded repair of aircraft composite sandwich structures. Final Report DOT/FAA/AR-03/74. Federal Aviation Administration, Office of Aviation Research, Washington (2004)

    Google Scholar 

  3. Gui-Fang, W.: Stress analysis of plates with a circular hole reinforced by flange reinforcing member. Appl. Math. Mech. 8(6), 569–588 (1987). https://doi.org/10.1007/bf02017406

    Article  Google Scholar 

  4. Bakuckas, J.G., et al.: Bonded repairs of composite panels representative of wing structure. In: Niepokolczycki, A., Komorowski, J. (eds.) ICAF 2019. LNME, pp. 565–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21503-3_45

    Chapter  Google Scholar 

  5. Zemlyanova, A.Y.: Reinforcement of a plate weakened by multiple holes with several patches for different types of plate-patch attachment. Math. Mech. Solids 21(3), 281–294 (2016). https://doi.org/10.1177/1081286513519812

    Article  MathSciNet  MATH  Google Scholar 

  6. Khan, M.A., Aglietti, G.S., Crocombe, A.D., Viquerat, A.D., Hamar, C.O.: Development of design allowables for the design of composite bonded double-lap joints in aerospace applications. Int. J. Adhes. Adhes. 82, 221–232 (2018). https://doi.org/10.1016/j.ijadhadh.2018.01.011

    Article  Google Scholar 

  7. Ramalho, L.D.C., Campilho, R.D.S.G., Belinha, J., da Silva, L.F.M.: Static strength prediction of adhesive joints: a review. Int. J. Adhes. Adhes. 96, 102451 (2020). https://doi.org/10.1016/j.ijadhadh.2019.102451

    Article  Google Scholar 

  8. Da Silva, L.F.M., das Neves, P.J.C., Adams, R.D., Spelt, J.K.: Analytical models of adhesively bonded joints – part I: literature survey. Int. J. Adhes. Adhes. 29(3), 319–330 (2009). https://doi.org/10.1016/j.ijadhadh.2008.06.005

  9. Wong, E.H., Liu, J.: Interface and interconnection stresses in electronic assemblies – a critical review of analytical solutions. Microelectron. Reliab. 79, 206–220 (2017). https://doi.org/10.1016/j.microrel.2017.03.010

    Article  Google Scholar 

  10. Kurennov, S.S.: Determining stresses in an adhesive joint with a longitudinal unadhered region using a simplified two-dimensional theory. J. Appl. Mech. Tech. Phys. 60(4), 740–747 (2019). https://doi.org/10.1134/s0021894419040199

    Article  MathSciNet  MATH  Google Scholar 

  11. Starovoitov, E.I., Leonenko, D.V., Tarlakovskii, D.V.: Thermoelastic deformation of a circular sandwich plate by local loads. Mech. Compos. Mater. 54(3), 299–312 (2018). https://doi.org/10.1007/s11029-018-9740-x

    Article  Google Scholar 

  12. Kudin, A.V., Choporov, S.V., Gomenyuk, S.I.: Axisymmetric bending of circular and annular sandwich plates with nonlinear elastic core material. Math. Models Comput. Simul. 9(5), 601–612 (2017). https://doi.org/10.1134/S2070048217050076

    Article  MathSciNet  MATH  Google Scholar 

  13. Shupikov, A.N., Smetankina, N.V., Svet, Ye.V.: Nonstationary heat conduction in complex-shape laminated plates. Trans. ASME. J. Heat Transfer 129(3), 335–341 (2007). https://doi.org/10.1115/1.2427073

  14. Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., Malykhina, A.: Modelling of bird strike on an aircraft glazing. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering. AISC, vol. 1113, pp. 289–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37618-5_25

    Chapter  Google Scholar 

  15. Barakhov, K., Dvoretska, D., Poliakov, O.: One-dimensional axisymmetric model of the stress state of the adhesive joint. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 310–319. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_26

    Chapter  Google Scholar 

  16. Campilho, R.D.S.G., Banea, M.D., Pinto, A.M.G., da Silva, L.F.M., de Jesus, A.M.P.: Strength prediction of single- and double-lap joints by standard and extended finite element modelling. Int. J. Adhes. Adhes. 31(5), 363–372 (2011). https://doi.org/10.1016/j.ijadhadh.2010.09.008

    Article  Google Scholar 

  17. Osnes, H., McGeorge, D.: Analysis of overlaminated double-lap joints. Compos. Part B: Eng. 36(6–7), 544–558 (2005). https://doi.org/10.1016/j.compositesb.2005.01.002

    Article  Google Scholar 

  18. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  19. Kurennov, S.S.: Longitudinal-flexural vibrations of a three-layer rod. An Improved Model. J. Math. Sci. 215(2), 159–169 (2016). https://doi.org/10.1007/s10958-016-2829-7

    Article  MathSciNet  Google Scholar 

  20. Kurennov, S.S.: Refined mathematical model of the stress state of adhesive lap joint: experimental determination of the adhesive layer strength criterion. Strength Mater. 52(5), 779–789 (2020). https://doi.org/10.1007/s11223-020-00231-5

    Article  Google Scholar 

  21. Wang, J., Zhang, C.: Three-parameter elastic foundation model for analysis of adhesively bonded joints. Int. J. Adhes. Adhes. 29, 495–502 (2009). https://doi.org/10.1016/j.ijadhadh.2008.10.002

    Article  MathSciNet  Google Scholar 

  22. Frostig, Y., Thomsen, O.T., Mortensen, F.: Analysis of adhesive-bonded joints, square-end, and spew-fillet - high-order theory approach. J. Eng. Mech. 125, 1298–1307 (1999). https://doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1298)

    Article  Google Scholar 

  23. Amidi, S., Wang, J.: An analytical model for interfacial stresses in double-lap bonded joints. J. Adhes. 95(11), 1031–1055 (2019). https://doi.org/10.1080/00218464.2018.1464917

    Article  Google Scholar 

  24. Kondratiev, A.: Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-Eur. J. Enterp. Technol. 6(7), 6–18 (2019). https://doi.org/10.15587/1729-4061.2019.184551

  25. Kondratiev, A., Potapov, O., Tsaritsynskyi, A., Nabokina, T.: Optimal design of composite shelled sandwich structures with a honeycomb filler. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2021. LNME, pp. 546–555. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77719-7_54

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Smetankina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurennov, S., Smetankina, N. (2022). Stress-Strain State of a Double Lap Joint of Circular Form. Axisymmetric Model. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems, vol 367. Springer, Cham. https://doi.org/10.1007/978-3-030-94259-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94259-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94258-8

  • Online ISBN: 978-3-030-94259-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics