Skip to main content

CRFST-GCN: A Deeplearning Spatial-Temporal Frame to Predict Traffic Flow

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13155))

  • 1934 Accesses

Abstract

Long-term traffic prediction has tremendous significance for ITS intelligent traffic management security problem. An accurate forecast can improve the efficiency of traffic management and reduce traffic accidents. Thus, the complex dynamic time-space cycle of traffic flow data makes traffic prediction a considerable challenge. Although the existing graph convolution method can capture the correlation between nodes, but never proposed to capture the similarity between the hidden layers of the graph convolution. This paper combines time, space, occupancy, and other related factors to propose a unique multi-period conditional random field (CRF) graph convolution model to accurately predict long-term traffic flow (CRFST-GCN). First, divide the data into three independent fields: trend, day, and week, and then input the data into CRFGCN frame to effectively extract spatial features. The convolution module captures the time-series relationship. Finally, it is verified on two real data sets that our proposed model effectively extracts similarities, and the results show that the model is 40 % more accurate than traditional methods during peak hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, W., Long, J., Li, K.-C., Xu, J., Ma, N., Lei, X.: A fast defogging image recognition algorithm based on bilateral hybrid filtering. ACM Trans. Multimedia Comput. Commun. Appl. 17(2), 1–16 (2021). https://doi.org/10.1145/3391297

    Article  Google Scholar 

  2. Xu, J., et al.: NFMF: neural fusion matrix factorisation for QoS prediction in service selection. Connect. Sci. 33, 1–16 (2021)

    Article  Google Scholar 

  3. Liang, W., Li, Y., Xu, J., Qin, Z., Li, K.C.: QoS prediction and adversarial attack protection for distributed services under DLaaS. IEEE Trans. Comput., 1–14 (2021)

    Google Scholar 

  4. Liang, W., Xie, S., Long, J., Li, K.-C., Zhang, D., Li, K.: A double puf-based rfid identity authentication protocol in service-centric internet of things environments. Inf. Sci. 503, 129–147 (2019). https://www.sciencedirect.com/science/article/pii/S0020025519305857

  5. Liang, W., Ning, Z., Xie, S., Hu, Y., Lu, S., Zhang, D.: Secure fusion approach for the internet of things in smart autonomous multi-robot systems. Inf. Sci. 579, 468–482 (2021)

    Article  MathSciNet  Google Scholar 

  6. Liang, W., Zhang, D., Lei, X., Tang, M., Li, K.C., Zomaya, A.Y.: Circuit copyright blockchain: blockchain-based homomorphic encryption for IP circuit protection. IEEE Trans. Emerg. Topics Comput. 9(3), 1410–1420 (2020)

    Article  Google Scholar 

  7. Garrow, D.: Odd deposits and average practice. a critical history of the concept of structured deposition. Arch. Dial. 19(2), 85–115 (2012)

    Article  Google Scholar 

  8. Zivot, E., Wang, J.: Vector autoregressive models for multivariate time series. In: Modeling Financial Time Series with S-Plus®, pp. 385–429 (2006)

    Google Scholar 

  9. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  10. Denoeux, T.: A k-nearest neighbor classification rule based on dempster-shafer theory. In: Classic Works of the Dempster-Shafer Theory of Belief Functions, pp. 737760. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4_29

  11. Joachims, T.: Making large-scale SVM learning practical. Technical report (1998)

    Google Scholar 

  12. Liang, W., Xie, S., Zhang, D., Li, X., Li, K.: A mutual security authentication method for RFID-PUF circuit based on deep learning. ACM Trans. Internet Technol. 22, 1–20 (2020)

    Article  Google Scholar 

  13. Liang, W., Xiao, L., Zhang, K., Tang, M., He, D., Li, K.-C.: Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet Things J., 1 (2021)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  16. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.-J.: Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266 (2019)

    Google Scholar 

  19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  20. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)

    Google Scholar 

  21. Ge, Z., Li, Y., Liang, C., Song, Y., Zhou, T., Qin, J.: Acsnet: adaptive cross-scale network with feature maps refusion for vehicle density detection. In: IEEE International Conference on Multimedia and Expo (ICME) 2021, pp. 1–6 (2021)

    Google Scholar 

  22. Zhang, S., Wu, G., Costeira, J.P., Moura, J.M.: FCN-RLSTM: deep spatio-temporal neural networks for vehicle counting in city cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3667–3676 (2017)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., Li, T.: Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif. Intell. 259, 147–166 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. Proc. AAAI Conf. Artif. Intell. 33(01), 5668–5675 (2019)

    Google Scholar 

  26. Kong, X., Xing, W., Wei, X., Bao, P., Zhang, J., Lu, W.: STGAT: spatial-temporal graph attention networks for traffic flow forecasting. IEEE Access 8, 134363–134372 (2020)

    Article  Google Scholar 

  27. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  28. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  29. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. Proc. AAAI Conf. Artif. Intell. 34(01), 914–921 (2020)

    Google Scholar 

  30. Chen, X., Liang, W., Xu, J., Wang, C., Li, K.-C., Qiu, M.: An efficient service recommendation algorithm for cyber-physical-social systems. IEEE Trans. Netw. Sci. Eng., 1 (2021)

    Google Scholar 

  31. Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. arXiv preprint arXiv:2012.09641 (2020)

  32. Zhang, X., et al.: Traffic flow forecasting with spatial-temporal graph diffusion network (2020)

    Google Scholar 

  33. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: Deepstn+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis. Proc. AAAI Conf. Artif. Intell 33(01), 1020–1027 (2019)

    Google Scholar 

  34. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, PMLR, pp. 2048–2057 (2015)

    Google Scholar 

  35. Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: Geoman: multi-level attention networks for geo-sensory time series prediction. IJCAI 2018, 3428–3434 (2018)

    Google Scholar 

  36. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proc. AAAI Conf. Artif. Intell 33(01), 922–929 (2019)

    Google Scholar 

  37. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  38. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  39. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2017)

    Google Scholar 

  40. Gao, H., Pei, J., Huang, H.: Conditional random field enhanced graph convolutional neural networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 276–284 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grants 61976087, 62072170, 61872130, and 61872138, the Fundamental Research Funds for the Central Universities under Grant 531118010527, the Science and Technology Key Projects of Hunan Province (No.2022GK2015) and the Hunan Provincial Natural Science Foundation of China (No.2021JJ30141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diao, C., Zhang, D., Liang, W., Li, KC., Jiang, M. (2022). CRFST-GCN: A Deeplearning Spatial-Temporal Frame to Predict Traffic Flow. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13155. Springer, Cham. https://doi.org/10.1007/978-3-030-95384-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95384-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95383-6

  • Online ISBN: 978-3-030-95384-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics