Skip to main content

Action Feasibility Learning with Cell-Based Multi-Object Representation for Task and Motion Planning

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 16 (IAS 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 412))

Included in the following conference series:

  • 1124 Accesses

Abstract

This paper proposes a description method and a deep neural network classifier for action feasibility learning for robotic tasks. The proposed method is able to deal with multiple three-dimensional obstacles and continuous action parameters. These advantages significantly enhance the effectiveness of the method in an unplanned environment. Thus, we expect our method can significantly increase the usability of task and motion planning in daily-life applications.

This research was supported by Korea Advanced Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2020M3H8A1114905).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  2. He, P., Liu, X., Chen, W., Gao, J.: A hybrid neural network model for commonsense reasoning. In: Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing, pp. 13–21 (2019)

    Google Scholar 

  3. Badia, A.P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, D., Blundell, C.: Agent57: Outperforming the atari human benchmark. arXiv preprint arXiv:2003.13350 (2020)

  4. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion planning through an extensible planner-independent interface layer. In: 2014 IEEE international conference on robotics and automation (ICRA), pp. 639–646. IEEE (2014)

    Google Scholar 

  5. Kabir, A.M., Thakar, S., Bhatt, P.M., Malhan, R.K., Rajendran, P., Shah, B.C., Gupta, S.K.: Incorporating motion planning feasibility considerations during task-agent assignment to perform complex tasks using mobile manipulators. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 5663–5670. IEEE (2020)

    Google Scholar 

  6. Yi, J.s., Ahn, M.S., Chae, H., Nam, H., Noh, D., Hong, D., Moon, H.: Task planning with mixed-integer programming for multiple cooking task using dual-arm robot. In: 2020 17th International Conference on Ubiquitous Robots (UR), pp. 29–35. IEEE (2020)

    Google Scholar 

  7. Wells, A.M., Dantam, N.T., Shrivastava, A., Kavraki, L.E.: Learning feasibility for task and motion planning in tabletop environments. IEEE Robot. Autom. Lett. 4(2), 1255–1262 (2019)

    Article  Google Scholar 

  8. Schmitt, P.S., Wirnshofer, F., Wurm, K.M., von Wichert, G., Burgard, W.: Planning reactive manipulation in dynamic environments. In: IROS, pp. 136–143 (2019)

    Google Scholar 

  9. Driess, D., Oguz, O., Ha, J.S., Toussaint, M.: Deep visual heuristics: learning feasibility of mixed-integer programs for manipulation planning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  10. Driess, D., Ha, J.S., Toussaint, M.: Deep visual reasoning: learning to predict action sequences for task and motion planning from an initial scene image. arXiv preprint arXiv:2006.05398 (2020)

  11. Li, R., Jabri, A., Darrell, T., Agrawal, P.: Towards practical multi-object manipulation using relational reinforcement learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4051–4058. IEEE (2020)

    Google Scholar 

  12. Mirabel, J., Lamiraux, F.: Manipulation planning: addressing the crossed foliation issue. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4032–4037. IEEE (2017)

    Google Scholar 

  13. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Kuffner, J.J., LaValle, S.M.: Rrt-connect: an efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2, pp. 995–1001. IEEE (2000)

    Google Scholar 

  17. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012). https://ompl.kavrakilab.org

  18. Stanford Artificial Intelligence Laboratory et al.: Robotic operating system

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keehoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, J., Chung, W.K., Kim, K. (2022). Action Feasibility Learning with Cell-Based Multi-Object Representation for Task and Motion Planning. In: Ang Jr, M.H., Asama, H., Lin, W., Foong, S. (eds) Intelligent Autonomous Systems 16. IAS 2021. Lecture Notes in Networks and Systems, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-95892-3_36

Download citation

Publish with us

Policies and ethics