Skip to main content

Accurate New Zealand Wildlife Image Classification-Deep Learning Approach

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

Abstract

Image classification is a major machine learning problem that has a wide range of applications in the real world. The Wellington Wildlife Camera Trap dataset contains images taken from vibration triggered cameras in sequences of three. State-of-the-art deep convolutional neural network (CNN) models, such as DenseNet-121 and ResNet-50, are unable to achieve the required accuracy of classification on this dataset. This research aims to improve the performance in multi-class classification tasks on the Wellington Dataset through a newly developed dual-input channel neural network. Our experiment results provide clear evidence that the new CNN model can achieve high accuracy and confidence on this challenging and scientifically important dataset. It is able to significantly reduce the amount of time required to manually classify wildlife images for conservation research in New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wellington Camera Trap dataset - http://lila.science/datasets/wellingtoncameratraps.

References

  1. Anton, V., Hartley, S., Geldenhuis, A., Wittmer, H.U.: Monitoring the mammalian fauna of urban areas using remote cameras and citizen science. J. Urban Ecol. 4(1), juy002 (2018)

    Article  Google Scholar 

  2. Anton, V., Hartley, S., Wittmer, H.U.: Evaluation of remote cameras for monitoring multiple invasive mammals in New Zealand. N. Z. J. Ecol. 42(1), 74–79 (2018)

    Google Scholar 

  3. Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 858–862. IEEE (2014)

    Google Scholar 

  4. Chen, R., Little, R., Mihaylova, L., Delahay, R., Cox, R.: Wildlife surveillance using deep learning methods. Ecol. Evol. 9(17), 9453–9466 (2019)

    Article  Google Scholar 

  5. Favorskaya, M., Pakhirka, A.: Animal species recognition in the wildlife based on muzzle and shape features using joint CNN. Procedia Comput. Sci. 159, 933–942 (2019)

    Article  Google Scholar 

  6. Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.: A survey on ensemble learning for data stream classification. ACM Comput. Surv. (CSUR) 50(2), 1–36 (2017)

    Article  Google Scholar 

  7. Hall, E.L., Kruger, R.P., Dwyer, S.J., Hall, D.L., Mclaren, R.W., Lodwick, G.S.: A survey of preprocessing and feature extraction techniques for radiographic images. IEEE Trans. Comput. 100(9), 1032–1044 (1971)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016)

  11. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. arXiv preprint arXiv:1901.06032 (2019)

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings ICML, vol. 30, p. 3 (2013)

    Google Scholar 

  15. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

    Article  Google Scholar 

  16. Norouzzadeh, M.S., et al.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115(25), E5716–E5725 (2018)

    Article  Google Scholar 

  17. Selfridge, O.G.: Pattern recognition and modern computers. In: Proceedings of the Western Joint Computer Conference, 1–3 March 1955, pp. 91–93 (1955)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., Packer, C.: Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. data 2, 150026 (2015)

    Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  21. Verma, G.K., Gupta, P.: Wild animal detection using deep convolutional neural network. In: Chaudhuri, B.B., Kankanhalli, M.S., Raman, B. (eds.) Proceedings of 2nd International Conference on Computer Vision & Image Processing. AISC, vol. 704, pp. 327–338. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7898-9_27

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Nekooei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Curran, B., Nekooei, S.M., Chen, G. (2022). Accurate New Zealand Wildlife Image Classification-Deep Learning Approach. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics