Skip to main content

Hydrogen Storage Technology for Aerial Vehicles

  • Chapter
  • First Online:
Fuel Cell and Hydrogen Technologies in Aviation

Part of the book series: Sustainable Aviation ((SA))

  • 1116 Accesses

Abstract

This chapter is dedicated to the technology of storing hydrogen for the usage in aviation. Step by step, different methods of storing hydrogen are explained. There are physical storage systems, but as well other types like chemical, hybrid or adsorption storage. All technologies are described and where needed even in more detail. At the beginning of this chapter, the history of hydrogen storage is recapped, and the different ways of storage are compared in their capacity to store hydrogen. Thereafter, the typical design and installation of hydrogen accumulators in the aviation industry are shown and explained. At the end of the chapter, a short overview on the safety regulation for aviation hydrogen storage is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Tittel: 1936–1937 LZ 129 “Hindenburg—1937–1987 50 Jahre Unglück von Lakehurst” In “Schriften zur Geschichte der Zeppelin-Luftschiffahrt Nr. 5”. Gessler, ISBN 3-926162-55-4, S. 23. 1987

  2. J. Klier; M. Rattey; G. Kaiser; M. Klupsch; A. Kade; M. Schneider; R. Herzog: A new cryogenic high-pressure H2 test area: First results. Proceedings of the 12th IIR International Conference: Dresden, Germany, Sept. 2012

    Google Scholar 

  3. K. Kunze, O. Kirche: CRYO-COMPRESSED HYDROGEN STORAGE, Cryogenic cluster day, Oxford, Sept. 2012

    Google Scholar 

  4. S. Schäfer, S. Maus: Technology Pitch: Subcooled Liquid Hydrogen (sLH2), NOW & CEP Heavy Duty Event, April 2021

    Google Scholar 

  5. R. K. Ahluwalia, T. Q. Hua, J-K Peng, S. Lasher, K. McKenney, and J. Sinha: Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications, Argonne National Laboratory, ANL/09-33, Dec. 2009

    Google Scholar 

  6. L. Schlapbach, A. Züttel: Hydrogen-storage materials for mobile applications, Nature 414: pp. 353–358, 2002

    Article  Google Scholar 

  7. L. Klebanoff, J. Keller: Final Report for the DOE Metal Hydride Center of Excellence, Sandia National Laboratories, SAND2012-0786, Feb. 2012

    Google Scholar 

  8. M. Vogt, L- Röntzsch: Power Paste—Energy Storage Solution, Fraunhofer Gesellschaft, Flyer, also in FORSCHUNG KOMPAKT, Feb 2021

    Google Scholar 

  9. K. C. Ott, S. Linehan, F. Lipiecki, C. L. Aardahl: Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes, Chemical Hydrogen Storage Center of Excellence, FY2008 Second Quarter Milestone Report, May 2008

    Google Scholar 

  10. G. Thomas and G. Parks, Potential Roles of Ammonia in a Hydrogen Economy, Feb. 2006

    Google Scholar 

  11. M. Hurskainen: Liquid organic hydrogen carriers (LOHC): Concept evaluation and techno-economics. VTT Technical Research Centre of Finland. Report No. VTT-R-00057-19, Dec. 2019

    Google Scholar 

  12. R. Ströbel, J. Garche, P.T. Moseley, L. Jörissen, G. Wolf: Hydrogen storage by carbon materials, Journal of Power Sources, 159, pp. 781–801, 2006

    Article  Google Scholar 

  13. J. Kleperis, P. Lesnicenoks, L. Grinberga, G. Chikvaidze, J. Klavins: Zeolite as material for hydrogen storage in transport applications, Latvian Journal of Physics and Technical Sciences 50(3), pp. 59–64, June 2013

    Google Scholar 

  14. M. S. Turnbull: Hydrogen Storage in Zeolites: Activation of the pore space through incorporation of guest materials, PhD Thesis, University of Birmingham, March 2010

    Google Scholar 

  15. A. Züttel: Hydrogen Storage Methods, Naturwissenschaften, 91, pp. 157172, April 2004

    Google Scholar 

  16. RTCA DO-160G: Environmental Conditions and Test Procedures for Airborne Equipment; RTCA DO-178C: Software Considerations in Airborne Systems and Equipment Certification; RTCA DO-254: Design Assurance Guidance for Airborne Electronic Hardware

    Google Scholar 

  17. EASA (European Aviation Safety Agency): CS25. Certification Specifications for Large Aeroplanes; Amendment 26; CS23: Certification Specifications for Normal-Category Aeroplanes

    Google Scholar 

  18. O. Kircher, E. Saefkow, B. Strauß, T. Jordan: CryoSys—Systemvalidierung Kryodruck-Fahrzeugtank, Final Report, Luftfahrtforschungsprogram LUFO IV-4 German research program, final report, May 2012

    Google Scholar 

  19. B. Pessl: Innovative Hydrogen Storage Systems A3PS Eco-Mobility. Tech Gate, Vienna, Austria, October 2014

    Google Scholar 

  20. A. Westernberger: CRYOPLANE—Liquid Hydrogen Fuelled Aircraft—System Analysis, European funding program FP5-GROWTH, final report, Sept. 2003

  21. D. Kastell, ECOCENTS—Effizientes Cooling Center für Flugzeugsysteme, Luftfahrtforschungsprogramm LUFO IV-2, German research program, final report, Feb. 2013

    Google Scholar 

  22. D. Kastell: FUCHS—Fuel Cell and Hydrogen System, Luftfahrtforschungsprogramm LUFO IV-4, German research program, final report, April 2017

    Google Scholar 

  23. M. Swain: Fuel Leak Simulation, Proceedings of the 2001 DOE Hydrogen Program Review, NREL/CP-570-30535

    Google Scholar 

  24. Japan Transport Safety Board: AIRCRAFT ACCIDENT INVESTIGATION REPORT CHINA AIRLINES—B18616; August 2009

    Google Scholar 

  25. https://www.draeger.com/en-us_us/Products/Aircraft-fire-training-systems

  26. O. Savin: Standardization Activities on Hydrogen & Fuel Cell Technologies for Airborne Applications, DOE’s H2@Airports Virtual Workshop, Nov. 2020

    Google Scholar 

  27. M. Sippel, A. Kopp: Progress on Advanced Cryo-Tanks Structural Design Achieved in CHATT-Project, ECSSMET—European Conference on Spacecraft Structures, Materials and Environmental Testing, Sept. 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Kastell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kastell, D. (2022). Hydrogen Storage Technology for Aerial Vehicles. In: Colpan, C.O., Kovač, A. (eds) Fuel Cell and Hydrogen Technologies in Aviation. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-99018-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99018-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99017-6

  • Online ISBN: 978-3-030-99018-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics