Skip to main content

Effect of Epistemic Uncertainty in Markovian Reliability Models

  • Chapter
  • First Online:
System Dependability and Analytics

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 387 Accesses

Abstract

This chapter introduces the moment-based epistemic uncertainty propagation in Markov models. The epistemic uncertainty in Markov models introduces the uncertainty of model parameters, and it can be propagated by regarding parameters as random variables. The idea behind the moment-based approach is to approximate the multiple integration with a series expansion of model parameters. This leads to the efficient computation of the uncertainty in the expected output measure. The expected output measure is represented by the expected value and the variance of model parameters and the first and second derivatives of output measure with respect to model parameters. In this chapter, we introduce the formulation of moment-based epistemic uncertainty propagation and the concrete methods to obtain the first and second derivatives of output measures in Markov models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MRM is defined by either discrete-time or continuous-time Markov chain. In this chapter, we focus only on the MRM described by the CTMC.

References

  1. Amer HH, Iyer RK (1986) Effect of uncertainty in failure rates on memory system reliability. IEEE Trans Reliab R-35(4):377–379

    Google Scholar 

  2. Asmussen S, Glynn PW (2007) Stochastic simulation: algorithms and analysis. Springer

    Google Scholar 

  3. Blake JT, Reibman AL, Trivedi KS (1988) Sensitivity analysis of reliability and performability measures for multiprocessor systems. In: 1988 ACM SIGMETRICS conference on measurement and modeling of computer systems

    Google Scholar 

  4. Coit DW (1997) System reliability confidence intervals for complex systems with estimated component reliability. IEEE Trans Reliab 46(4):487–493

    Article  Google Scholar 

  5. Devaraj A, Mishra K, Trivedi K (2010) Uncertainty propagation in analytic availability models. In: Symposium on reliable distributed systems, SRDS, vol 2010, pp 121–130

    Google Scholar 

  6. Dhople SV, Dominguez-Garcia AD (2012) A parametric uncertainty analysis method for Markov reliability and reward models. IEEE Trans Reliab 61(3):634–648

    Article  Google Scholar 

  7. Glasserman P Liu Z (2007) Sensitivity estimates from characteristic functions. In: Henderson SG, Biller B, Hsieh M-H, Shortle J, Tew JD, Barton RR (eds) Proceedings of the 2007 winter simulation conference, pp 932–940

    Google Scholar 

  8. Gribaudo M, Pinciroli R, Trivedi K (2018) Epistemic uncertainty propagation in power models. Electron Notes Theoret Comput Sci 337:67–86. Proceedings of the ninth international workshop on the practical application of stochastic modelling (PASM)

    Google Scholar 

  9. Harverkort B, Meeusissen AMH (1995) Sensitivity and uncertainty analysis of Markov-reward models. IEEE Trans Reliab 44(1):147–154

    Article  Google Scholar 

  10. Helton JC, Davis FJ (2003) Latin hypercube sampling and propagation of uncertainty in analysis of complex systems. Reliab Eng Syst Safety 81(1):23–69

    Article  Google Scholar 

  11. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Safety 91(10–11):1175–1209

    Article  Google Scholar 

  12. Hirel C, Tuffin B, Trivedi KS (2000) SPNP: stochastic petri nets. version 6.0. In: Computer performance evaluation. Modelling Techniques and Tools, vol 1786. Springer Berlin/Heidelberg, pp 354–357

    Google Scholar 

  13. Leiberman GJ, Ross SM (1971) Confidence intervals for independent exponential series systems. J Am Statist Assoc 66(336):837–840

    Article  MathSciNet  Google Scholar 

  14. Matos RDS, Maciel PRM, Machida F, Kim DS, Trivedi KS (2012) Sensitivity analysis of server virtualized system availability. IEEE Trans Reliab 61(4):994–1006

    Article  Google Scholar 

  15. Mishra K, Trivedi KS (2011) Uncertainty propagation through software dependability models. In: 2011 IEEE 22nd international symposium on software reliability engineering, pp 80–89

    Google Scholar 

  16. Mishra K, Trivedi KS, Some R (2012) Uncertainty analysis of the remote exploration and experimentation system. J Spacecraft Rockets 49:1032–1042

    Article  Google Scholar 

  17. Mishra K, Trivedi KS (2010) A non-obtrusive method for uncertainty propagation in analytic dependability models. In: Proceedings 4th Asia-Pacific international symposium on advanced reliability and maintenance modeling (APARM 2010)

    Google Scholar 

  18. Okamura H, Dohi T, Trivedi K (2018) Parametric uncertainty propagation through dependability models. In: 2018 eighth Latin-American symposium on dependable computing (LADC), pp 10–18

    Google Scholar 

  19. Okamura H, Dohi T (2016) Performance comparison of algorithms for computing parametric sensitivity functions in continuous-time Markov chains. In: Proceedings of the 7th Asia-Pacific international symposium on advanced reliability and maintenance modeling (APARM 2016), (Taiwan), McGraw-Hill, pp 415–422

    Google Scholar 

  20. Pinciroli R, Bobbio A, Boichini C, Cerotti D, Gribaudo M, Miele A, Trivedi K (2017) Epistemic uncertainty propagation in a Weibull environment for a two-core system-on-chip. In: 2017 2nd international conference on system reliability and safety (ICSRS), pp 516–520

    Google Scholar 

  21. Pinciroli R, Trivedi KS, Bobbio A (2017) Parametric sensitivity and uncertainty propagation in dependability models. In: Proceedings of the 10th EAI international conference on performance evaluation methodologies and tools on 10th EAI international conference on performance evaluation methodologies and tools, VALUETOOLS’16, pp 44–51, ICST, Brussels, Belgium, Belgium, 2017. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)

    Google Scholar 

  22. Ramesh AV, Trivedi KS (1993) On the sensitivity of transient solutions of Markov models. In: 1993 ACM SIGMETRICS conferecne on measurement and modeling of computer systems

    Google Scholar 

  23. Reibman A, Trivedi KS (1989) Transient analysis of cumulative measures of Markov model behavior. Stochast Models 5(4):683–710

    Article  MathSciNet  Google Scholar 

  24. Sarkar TK (1971) An exact lower confidence bound for the reliability of a series system where each component has an exponential time to failure. Technometrics 13(3):535–546

    Article  MathSciNet  Google Scholar 

  25. Singpurwalla ND (2006) Reliability and risk: a bayesian perspective (1st edn). Wiley

    Google Scholar 

  26. Stamatelatos M, Apostolakis G, Dezfuli H, Everline C, Guarro S, Moeini P, Mosleh A, Paulos T, Youngblood R (2002) Probabilistic risk assessment procedures guide for NASA managers and practitioners. http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf

  27. Trivedi KS (2001) Probability and Statistics with Reliability. Queuing Comput Sci Appl

    Google Scholar 

  28. Trivedi KS, Bobbio A (2017) Reliability and availability engineering: modeling, analysis, and applications. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  29. Trivedi KS, Sahner R (2009) SHARPE at the age of twenty two. SIGMETRICS Performance Evaluat Rev 36(4):52–57

    Article  Google Scholar 

  30. Yin L, Smith M, Trivedi KS (2001) Uncertainty analysis in reliability modeling. In: Reliability and maintainability symposium, pp 229–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Okamura .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(M(\boldsymbol{\theta })\) be an output measure of a dependability model, where \(\boldsymbol{\theta }= (\boldsymbol{\theta }_1, \ldots , \boldsymbol{\theta }_l)^T\) is a column vector representing a parameter vector. Also, \(\boldsymbol{\Theta }\) is a parameter random vector. Define \(f_{\boldsymbol{\Theta }}(\boldsymbol{\theta })\) is the joint epistemic density of the parameter vector \(\boldsymbol{\Theta }\).

Suppose that the point estimate of \(\hat{\boldsymbol{\theta }}\) is given by the expected value of \(f_{\boldsymbol{\Theta }}(\boldsymbol{\theta })\), i.e.,

$$\begin{aligned} \hat{\boldsymbol{\theta }} = \text {E}[\boldsymbol{\Theta }] = \int \boldsymbol{\theta }f_{\boldsymbol{\Theta }}(\boldsymbol{\theta }) d\boldsymbol{\theta }. \end{aligned}$$
(41)

First we consider the approximation of the expectation of \(M(\boldsymbol{\Theta })\):

$$\begin{aligned} \text {E}[M(\boldsymbol{\Theta })] = \int M(\boldsymbol{\theta }) f_{\boldsymbol{\Theta }}(\boldsymbol{\theta }) d\boldsymbol{\theta }. \end{aligned}$$
(42)

By taking Taylor series expansion of \(M(\boldsymbol{\theta })\) at \(\hat{\boldsymbol{\theta }}\), we have:

$$\begin{aligned} \text {E}[M(\boldsymbol{\Theta })] =&M(\hat{\boldsymbol{\theta }}) + \text {E}[\boldsymbol{M}'(\hat{\boldsymbol{\theta }})^T (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})] \nonumber \\&+ \frac{1}{2} \text {E}\left[ (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})^T \boldsymbol{M}''(\hat{\boldsymbol{\theta }}) (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }}) \right] + \cdots \end{aligned}$$
(43)

where

$$\begin{aligned} \boldsymbol{M}'(\hat{\boldsymbol{\theta }})&= \frac{\partial M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} \nonumber \\&= \begin{pmatrix} \displaystyle \frac{\partial M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }_1} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}}&\cdots&\displaystyle \frac{\partial M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }_l} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} \end{pmatrix}^T \end{aligned}$$
(44)

and

$$\begin{aligned} \boldsymbol{M}''(\hat{\boldsymbol{\theta }})&= \frac{\partial ^2}{\partial \boldsymbol{\theta }^2} M(\boldsymbol{\theta }) \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} \nonumber \\&= \begin{pmatrix} \displaystyle \frac{\partial ^2 M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }_1^2} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} &{} \cdots &{} \displaystyle \frac{\partial ^2 M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }_1 \partial \boldsymbol{\theta }_l} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} \\ \vdots &{} \ddots &{} \vdots \\ \displaystyle \frac{\partial ^2 M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }_l \partial \boldsymbol{\theta }_1} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} &{} \cdots &{} \displaystyle \frac{\partial ^2 M(\boldsymbol{\theta })}{\partial \boldsymbol{\theta }_l^2} \bigg |_{\boldsymbol{\theta }=\hat{\boldsymbol{\theta }}} \end{pmatrix}. \end{aligned}$$
(45)

Since \(\hat{\boldsymbol{\theta }} = \text {E}[\boldsymbol{\Theta }]\), the second term of Taylor series expansion becomes 0. We have the following approximation

$$\begin{aligned} \text {E}[M(\boldsymbol{\Theta })]&\approx M(\hat{\boldsymbol{\theta }}) + \frac{1}{2} \text {E}\left[ (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})^T \boldsymbol{M}''(\hat{\boldsymbol{\theta }}) (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})\right] \nonumber \\&= M(\hat{\boldsymbol{\theta }}) + \frac{1}{2} \Bigg (\sum _{i=1}^l M''_{i,i}(\hat{\boldsymbol{\theta }}) \text {Var}[\Theta _i] + 2 \sum _{i=1}^l \sum _{j=1}^{i-1} M''_{i,j}(\hat{\boldsymbol{\theta }}) \text {Cov}[\Theta _i, \Theta _j]\Bigg ), \end{aligned}$$
(46)

where \(M''_{i,j}(\hat{\boldsymbol{\theta }})\) is an (i, j)-element of \(\boldsymbol{M}''(\hat{\boldsymbol{\theta }})\).

Similar to the approximation of \(\text {E}[M(\boldsymbol{\Theta })]\), we consider Taylor series expansion of the second moment of \(M(\boldsymbol{\Theta })\), i.e.,

$$\begin{aligned}&\text {E}\left[ M(\boldsymbol{\Theta })^2\right] = M(\hat{\boldsymbol{\theta }})^2 + \text {E}[2 M(\hat{\boldsymbol{\theta }}) \boldsymbol{M}'(\hat{\boldsymbol{\theta }})^T (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})] \nonumber \\&+ \text {E}\left[ (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})^T \left( \boldsymbol{M}'(\hat{\boldsymbol{\theta }}) \boldsymbol{M}'(\hat{\boldsymbol{\theta }})^T + M(\hat{\boldsymbol{\theta }}) \boldsymbol{M}''(\hat{\boldsymbol{\theta }}) \right) (\boldsymbol{\Theta }- \hat{\boldsymbol{\theta }})\right] + \cdots . \end{aligned}$$
(47)

The approximation is given by

$$\begin{aligned}&\text {E}\left[ M(\boldsymbol{\Theta })^2\right] \approx M(\hat{\boldsymbol{\theta }})^2 + \sum _{i=1}^l \left( M'_i(\hat{\boldsymbol{\theta }})^2 + M(\hat{\boldsymbol{\theta }}) M''_{i,i}(\hat{\boldsymbol{\theta }}) \right) \text {Var}[\Theta _j] \nonumber \\&{} + 2 \sum _{i=1}^l \sum _{j=1}^{i-1} \left( M'_i(\hat{\boldsymbol{\theta }})M'_j(\hat{\boldsymbol{\theta }}) + M(\hat{\boldsymbol{\theta }}) M''_{i,j}(\hat{\boldsymbol{\theta }}) \right) \text {Cov}[\Theta _i, \Theta _j]. \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okamura, H., Zheng, J., Dohi, T., Trivedi, K.S. (2023). Effect of Epistemic Uncertainty in Markovian Reliability Models. In: Wang, L., Pattabiraman, K., Di Martino, C., Athreya, A., Bagchi, S. (eds) System Dependability and Analytics. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-02063-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02063-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02062-9

  • Online ISBN: 978-3-031-02063-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics