Skip to main content

The Holy Triangle of Science, Technology and Industry for Photovoltaic Solar Energy Conversion

  • Chapter
  • First Online:
Renewable Energy Based Solutions

Part of the book series: Lecture Notes in Energy ((LNEN,volume 87))

  • 695 Accesses

Abstract

Collaborations and co-creations within the “Holy Triangle of Science, Technology and Industry” have been governing the unprecedented progress in each and every part of the value chain of the photovoltaic solar energy conversion sector since the first discovery of the photovoltaic effect in 1839 by French physicist Alexander Edmond Becquerel (Becquerel in C R 9:561–567, 1839). Intentionally or accidentally discovered effects leading to converting solar energy directly to electrical energy were initiated innovation cycles in the photovoltaic power industry aimed at delivering workable, economically feasible products to serve end users. Despite the growing interest in photovoltaic conversion, the level of scientific understanding of interaction between light and matter had been somewhat unclear up to the end of nineteenth centuries. The frontline of scientific and technological developments in the field of converting solar energy directly to electrical energy were pushed forward continuously in the early twentieth century, with the better understanding of light and matter interaction combined with the discovery of the electron and nucleus. Despite the low converting efficiencies, scientist, technologists and entrepreneurs kept their faith in the emergence of a commercially feasible device to convert solar energy to electricity in the first half of twentieth century. At the beginning of the second half of the twentieth century, the Bell Telephone Company engaged in controlling the properties of semiconductors by introducing impurities for silicon rectifiers and they discovered that illumination of a p-n heterojunction constructed between silicon containing gallium impurities and lithium creates a current in the external circuit. Following this observation, the innovation ecosystem at Bell laboratories surrounding fundamental research and development, technological progress as well product development focused their effort to improve the properties of silicon semiconductors and fabricating a solar cell based on silicon p-n junctions. In 1954 they designed a “solar battery” by serial connection of a solar cell to power the radio transmitter (Chapin et al. in J Appl Phys 25(5):676–677, 1954). Since then the extensive basic research and technological development efforts have been offering innovative solutions for photovoltaic conversion in efficiency, stability and manufacturing cost to compete with conventional power production technologies as well as other clean energy technologies. The progress in the each corner of the holy triangle follow complex and evolutionary road maps and the parameters of solar cells, modules and systems have being improved using innovative materials, devices, technologies for solar power sector different combinations. The emerging and novel technologies have been advancing in the technology readiness level (TRL) index from the blue sky research level (TRL1) to the system demonstration over the full range of expected conditions level (TRL9). This work aims to summarize the relationships in the holy triangle of science, technology and industry in the quest to convert solar energy into electricity since the first discovery of the photovoltaic effect in 1839 (Becquerel in C R 9:561–567, 1839).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams W et al (1877) The action of light on selenium. Proc R Soc Lond 25(171–178):113–117

    Google Scholar 

  • Akinoglu BG (2021) Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustain Energ Technol Assessments 46(2021):101287

    Google Scholar 

  • Aranovich JA et al (1980) Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J Appl Phys 51:4260–4268

    Article  Google Scholar 

  • Atalla M et al (1959) Stabilization of silicon surfaces by thermally grown oxides. Bell Syst Tech J 38:749–783

    Article  Google Scholar 

  • Bailey-Salzman RF et al (2006) Semitransparent organic photovoltaic cells. Appl Phys Lett 88:233502

    Article  Google Scholar 

  • Baines T (2018) Chapter 10, CdTe solar cells in a comprehensive guide to solar energy systems. Academic Press https://doi.org/10.1016/B978-0-12-811479-7.00010-5

  • Barker J et al (1992) Electrodeposited CdTe for thin film solar cells. Int J Solar Energ 12:79–94

    Article  Google Scholar 

  • Barrioz V et al (2007) In situ deposition of cadmium chloride films using MOCVD for CdTe solar cells. Thin Solid Films 515:5808–5813

    Article  Google Scholar 

  • Becquerel E (1839) Mémoire sur les effets électriques produits sous l’influence des rayons solaires. C R 9:561–567

    Google Scholar 

  • Black LE (2016) New perspectives on surface passivation: understanding the Si-Al2O3 interface. Springer, p 13. ISBN 9783319325217

    Google Scholar 

  • Blakers AW (1989) 22.8% efficient silicon solar cell. Appl Phys Lett 55:1363–1365

    Article  Google Scholar 

  • Bonnet D, Rabenhorst H (1972) New results on the development of a thin film p-CdTe/n-CdS heterojunction solar cell. In: 9th IEEE photovoltaic specialists conference, pp 129–133

    Google Scholar 

  • Bounioux C (2012) Polym Adv Technol 23:1129–1140

    Article  Google Scholar 

  • Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl Phys Lett 62:2851–2852

    Article  Google Scholar 

  • Burger B et al (2021) Photovoltaics report, Fraunhofer institute for solar energy systems, ISE, Freiburg. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

  • Chai W et al (2016) 22.2% efficiency n-type PERT solar cell. Energy Procedia 92:399–403

    Google Scholar 

  • Chang SY et al (2018) Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2:1039–1054

    Google Scholar 

  • Chapin DM et al (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677. https://doi.org/10.1063/1.1721711

    Article  Google Scholar 

  • Chapin DM et al (1957) US Pat off 2(780):765

    Google Scholar 

  • Chen G et al (2013) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42:8304–8338

    Article  Google Scholar 

  • Choi PP et al (2011) Comparative atom probe study of Cu(In, Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. J Appl Phys 110(12):124513

    Article  Google Scholar 

  • Chu LG et al (2006) Efficient inverted polymer solar cells. Appl Phys Lett 88:253503

    Article  Google Scholar 

  • Clarke AC (1952) Islands in the Sky. Sidgwick & Jackson (Pan Macmillan)

    Google Scholar 

  • Coblentz W (1913) US patent: 1077219

    Google Scholar 

  • Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(1):42–50

    Article  Google Scholar 

  • Cunningham D (2002) (2020) Cadmium telluride PV module manufacturing at BP solar. Prog Photovolt Res Appl 10:159–168

    Article  Google Scholar 

  • Dutter M, et al (2014) Low-cost thin-film deposition apparatus for solar applications. 2014 systems and information engineering design symposium (SIEDS). https://doi.org/10.1109/SIEDS.2014.6829891

  • Einstein A (1905) On a heuristic point of view about the creation and conversion of light. Ann Physik 17:132; (1967) The old quantum theory (trans: Haar DR). Pergamon Press Ltd, pp 91–107

    Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • First Solar (2016) New world record for CdTe efficiency. Available online: https://www.solarpowerworldonline.com/2016/02/24939

  • Fischer H, Pschunder W (1973) Investigation of photon and thermal induced changes in silicon solar cells. 10th IEEE photovoltaic specialists conference. Palo Alto, CA, USA, p 404

    Google Scholar 

  • Fornari R (ed) (2018) Single crystals of electronic materials: growth and properties, woodhead publishing series in electronic and optical materials. Woodhead Publishing ISBN: 9780081020975

    Google Scholar 

  • Frass LM (2014) Chapter 1: history of solar cell development in low cost of solar electric power: 1 Springer international. https://doi.org/10.1007/978-3-319-07530-3

  • Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE projects GmbH Freiburg, 27 July 2021, photovoltaics report https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html

  • Fritts C (1885) On the Fritts selenium cell and batteries. Van Nostrands Eng Mag 32:388–395

    Google Scholar 

  • Gan Q et al (2013) Adv Mater 25:2385–2396

    Google Scholar 

  • Gershon T (2011) Mater Sci Technol 27:1357–1371

    Article  Google Scholar 

  • Gilot J et al (2007) Appl Phys Lett 91:113520

    Article  Google Scholar 

  • Glunz SW, Feldmann F (2018) SiO2 surface passivation layers—a key technology for silicon solar cells. Sol Energy Mater Sol Cells 185:260–269

    Article  Google Scholar 

  • Grafström J, Poudineh R (2021) A critical assessment of learning curves for solar and wind power technologies. Oxford Institute for Energy Studies Paper: EL 43

    Google Scholar 

  • Green MA (2015) The passivated emitter and rear cell (PERC): from conception to massproduction. Sol Energy Mater Sol Cell 143:190–197

    Article  Google Scholar 

  • Green MA et al (2020) Solar cell efficiency tables (Version 55). Prog Photovolt Res Appl 28:3–15

    Article  Google Scholar 

  • Green AM (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog Photovoltaics Res Appl 9:123–135. https://doi.org/10.1002/pip.360

  • Green MA et al (1984) A.W. ultimate performance silicon solar cells, Final Report, NERDDP Project 81/1264

    Google Scholar 

  • Gregory MW et al (2020) The photovoltaic technologies roadmap. J Phys d: Appl Phys 53(493001):1–47

    Google Scholar 

  • Hao M et al (2020) Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1 x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat Energy 5(79):8

    Google Scholar 

  • Heeger AJ (2000) The 2000 nobel prize in chemistry. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000

  • Hertz H (1893) Electric waves, trans. Macmillan, New York

    Google Scholar 

  • Husain AAF et al (2018) A review of transparent solar photovoltaic technologies. Renew Sustain Energy Rev 94:779–791

    Article  Google Scholar 

  • IDTechEx Research (2020) Materials for printed/flexible electronics 2021–2031: technologies, applications, market forecasts

    Google Scholar 

  • Imalka J et al (2013) Inorganics-in-Organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411

    Article  Google Scholar 

  • ITRPV (International technology road map for photovoltaics) (2020) 12th edn. https://www.vdma.org/international-technology-roadmap-photovoltaic

  • ITRPV (International technology road map for photovoltaics) (2021) The results of 2020 report, 12th edn. ITRPV

    Google Scholar 

  • Jordan D et al (2016) Compendium of photovoltaic degradation rates. Prog Photovolt 24:978–989

    Article  Google Scholar 

  • Kranz L et al (2012) Effect of sodium on recrystallization and photovoltaic properties of CdTe solar cells. Sol Energy Mater Sol Cells 105:213–219

    Article  Google Scholar 

  • Kroto HW et al (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  • Lana CW, et al (2018) Recent progress and challenges of casting, SNEC 2018 PV Expo Shangai, Chaina

    Google Scholar 

  • Lewis GN (1926) The conservation of photons. Nature 118(2981):874–887

    Article  Google Scholar 

  • Li Y et al (2020) Color-neutral, semitransparent organic photovoltaics for power window applications. Proc Natl Acad Sci (PNAS) 117(35):21147–21154

    Google Scholar 

  • Liu Q, et al (2020) 18% efficiency organic solar cells. Sci Bull 1–10. https://doi.org/10.1016/j.scib.2020.01.001

  • Ma G (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70

    Article  Google Scholar 

  • Major JD et al (2010) Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systemati cally increased grain size. Sol Energy Mater Sol Cells 94:1107–1112

    Google Scholar 

  • Major JD et al (2017) P3HT as a pinhole blocking back contact for CdTe thin film solar cells. Sol Energy Mater Sol Cells 172:1–10

    Article  Google Scholar 

  • Mandelkorn J, Lamneck JH Jr (1973) A new electric field effect in silicon solar cells. J Appl Phys 44:4785–4787

    Article  Google Scholar 

  • Mandelkorn T (1958) A radiation resistant, n-on-p silicon photovoltaic cells, U.S. signal corps laboratories (NASA 2021) Ref: Credits: NASA https://www.nasa.gov/mission_pages/station/structure/elements/solar_arrays-about.html

  • Mercaldo LV, Veneri PD (2020) Silicon solar cells: materials, technologies, architectures. Solar Cells and Light Manage 35–57

    Google Scholar 

  • Mulligan WP, et al (7–11 June 2004) Manufacture of solar cells with 21% efficiency Proceedings 19th European photovoltaic solar energy conference (EU PVSEC). Paris, France, Munich: WIP, pp 387–90

    Google Scholar 

  • Nakazawa T (1987) High efficiency indium oxide/cadmium telluride solar cells. Appl Phys Lett 50:279

    Article  Google Scholar 

  • NASA (2021) New solar arrays to power NASA’s international space station research. https://www.nasa.gov/feature/new-solar-arrays-to-power-nasa-s-international-space-stationresearch

  • NASA (2022) https://www.nasa.gov/mission_pages/station/structure/elements/solar_arrays-about.html

  • National Renewable Energy Laboratory 2020 (available at: www.nrel.gov/pv/cell-fficiency.html)

  • Nemet G (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34(17):3218–3232

    Article  Google Scholar 

  • Nismy NA, et al (2010) Appl Phys Lett 97:033105

    Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666

    Article  Google Scholar 

  • Nowell MM et al (2015) Characterization of sputtered CdTe thin films with electron backscatter diffraction and correlation with device performance. Icrosc Microanal 21:927–935

    Article  Google Scholar 

  • O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Ohl RS (1941) Light sensitive electric device. US patent 240252, Light-sensitive electric device including silicon. US patent 2443542

    Google Scholar 

  • Oktik S (1989) Low cost, non-vacuum techniques for the preparation of thin/thick films for photovoltaic applications. Prog Crystal Growth Characterizations 17:171–240

    Article  Google Scholar 

  • Oktik S et al (1996) Properties of ZnO layers deposited by “photo-assisted” spray pyrolysis. J Cryst Growth 159:195–199

    Article  Google Scholar 

  • Paudel NR et al (2011) Improvements in ultra-thin CdS/CdTe solar cells. In: 37th photovoltaic specialists conference, pp 4–6

    Google Scholar 

  • Perlin J (2013) Let it shine: the 6000-year story of solar energy. New World Library. ISBN 978-1-60868-132-7

    Google Scholar 

  • Plass R et al (2002) Quantum dot sensitization of organic-inorganic hybrid solar cells. J Phys Chem B 106:7578–7580

    Article  Google Scholar 

  • Ramanujam J et al (2020) Flexible CIGS, CdTe and a-Si: H based thin film solar cells: a review. Prog Mater Sci 110:100619. https://doi.org/10.1016/j.pmatsci.2019.100619

    Article  Google Scholar 

  • Rutherford E (1911) The scattering of α and β particles by matter and the structure of the atom. Philos Mag Ser 6 21: 669–688

    Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  • Siemens W (1875) On the influence of light upon the conductivity of crystallin e selenium. Phil Mag 4th Ser 416

    Google Scholar 

  • Sinke WC (2019) Development of photovoltaic technologies for global impact. Renew Energy 138:911–914. https://doi.org/10.1016/j.renene.2019.02.030

    Article  Google Scholar 

  • Smith W (1873) Effect of light on selenium during the passage of an electric current. Nature 7:303. https://doi.org/10.1038/007303e0

    Article  Google Scholar 

  • Stoletow MA (1888) On a kind of electric current produced by ultra-violet rays. Philos Mag Ser 5. 26. 160:317–319

    Google Scholar 

  • Taguchi M et al (2000) HITTM cells—high-efficiency crystalline Si cells with novel structure. Prog Photovolt Res Appl 8:503–513

    Article  Google Scholar 

  • Thomson JJ (1897) On the cathode rays. In: Proceedings of the Cambridge philosophical society, vol 9. pp 243

    Google Scholar 

  • Turner AK et al (1991) Stable, high efficiency thin film solar cells produced by electrodeposition of cadmium telluride. Solar Energy Mater 23:388–393

    Google Scholar 

  • Turner AK et al (1994) BP solar thin film CdTe photovoltaic technology. Sol Energy Mater Sol Cells 35:263–270

    Google Scholar 

  • Tuzun O et al (2006) Electrical characterization of novel Si solar cells. Thin Solid Films 511–512:258–264. https://doi.org/10.1016/j.tsf.2005.12.104

    Article  Google Scholar 

  • Twich D (1953) Photovoltaic cells and their possible use as power convertors. Ohio J Sci 53(5):300–314

    Google Scholar 

  • Tyan YS, et al (27–30 Sept 1982) Efficient thin film CdS/CdTe solar cells. In: Proceedings of the 16th IEEE photovoltaic specialist conference, New York, NY, USA

    Google Scholar 

  • Upadhyaya HM, et al (2007) Chapter 22.3 thin-film PV technology in photovoltaics fundamentals, technology and application taylor and Francis group, LLC

    Google Scholar 

  • Vasiliev M, et al ( 2019) Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. MDPI Energies 12: 1080. https://doi.org/10.3390/en12061080

  • Wenhao Cai W et al (2016) 22.2% efficiency n-type PERT solar cell. Energy Procedia 92:399–403

    Article  Google Scholar 

  • Wilson GM et al (2019) The 2020 photovoltaic technologies roadmap. J Phys D: Appl Phys 53(493001):47; AIP conference proceedings, vol 2147, 010001. https://doi.org/10.1063/1.5123805 Published online: 27 Aug 2019

  • Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77(6):803–814

    Article  Google Scholar 

  • Wu C et al (2020) Multifunctional nanostructured materials for next generation photovoltaics. Nano Energ 70:104480

    Article  Google Scholar 

  • Wu X, et al (22–26 Oct 2001) 16.5% ecient CdS/CdTe polycrystalline thin-film solar cell. In: Proceedings of the 17th European photovoltaic solar energy conference. Munich, Germany

    Google Scholar 

  • Yang X et al (2013) Adv Energy Mater 3:666–673

    Article  Google Scholar 

  • Yella A et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science 334:629–634

    Article  Google Scholar 

  • Yoshikawa K et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032

    Article  Google Scholar 

  • Yu CF et al (2011) Unraveling the photovoltaic technology learning curve by incorporation ofinput price changes and scale effects. Renew Sustain Energy Rev 15(1):324–337

    Article  Google Scholar 

  • Zhang L et al (2019) 13.6% efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett 4:943–951

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şener Oktik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oktik, Ş. (2022). The Holy Triangle of Science, Technology and Industry for Photovoltaic Solar Energy Conversion. In: Uyar, T.S., Javani, N. (eds) Renewable Energy Based Solutions. Lecture Notes in Energy, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-031-05125-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05125-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05124-1

  • Online ISBN: 978-3-031-05125-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics