Skip to main content

Uniform and Non-uniform Embedding Quality Using Electrocardiographic Signals

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

Uniform embedding techniques have limitations for the reconstruction of the phase space of nonlinear time series whose dynamics is not completely known, so new embedding techniques have been developed based on non-uniform methodologies. This work compares the reconstruction quality supported by the Uzal cost function, of three electrocardiography databases. For the uniform reconstruction, Average Mutual Information was implemented to find the time delay (\(\tau \)) and False Nearest Neighbor and Average False Neighbor were tested to find the attractor dimension (m). For the non-uniform reconstruction, the algorithm of Hankel Singular Value Decomposition was implemented. The results showed that the non-uniform embedding, based on Hankel Singular Value Decomposition, provides a better quality in the reconstruction of the phase space.

This work is presented in partial fulfillment of the requirements for the “Call for the strengthening of vocations and training in ST&I for economic reactivation in the framework of the 2020 post-pandemic” No. 891 of MinCiencias- Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broock, W.A., Scheinkman, J.A., Dechert, W.D., LeBaron, B.: A test for independence based on the correlation dimension. Econ. Rev. 15(3), 197–235 (1996). https://doi.org/10.1080/07474939608800353

    Article  Google Scholar 

  2. Broomhead, D.S., Jones, R.: Time-series analysis. Proc. Royal Soc. London. A. Math. Phys. Sci. 423(1864), 103–121 (1989). https://doi.org/10.1098/rspa.1989.0044

  3. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an intermittently forced linear system. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-00030-8

    Article  CAS  Google Scholar 

  4. Cao, H.: Development of techniques for general purpose simulators. Stanford University (2002)

    Google Scholar 

  5. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110(1–2), 43–50 (1997). https://doi.org/10.1016/S0167-2789(97)00118-8

    Article  Google Scholar 

  6. Chelidze, D.: Reliable estimation of minimum embedding dimension through statistical analysis of nearest neighbors. J. Comput. Nonlinear Dyn. 12(5) (2017). https://doi.org/10.1115/1.4036814

  7. Delage, O., Bourdier, A., et al.: Selection of optimal embedding parameters applied to short and noisy time series from rössler system. J. Mod. Phys. 8(09), 1607 (2017). https://doi.org/10.4236/jmp.2017.89096

    Article  Google Scholar 

  8. Delgado-Trejos, E., Hurtado Jaramillo, J.S., Guarín, D.L., Orozco, Á.Á.: Datos sustitutos pseudoperiódicos en señales de voz para determinar dinámicas subyacentes. Ingeniería y Desarrollo 31(2), 185–201 (2013)

    Google Scholar 

  9. Dhanya, C., Kumar, D.N.: Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Resources 33(3), 327–347 (2010). https://doi.org/10.1016/j.advwatres.2010.01.001

    Article  Google Scholar 

  10. Donoho, D.L., Gavish, M.: The optimal hard threshold for singular values is 4/\(\sqrt{3}\) (2013)

    Google Scholar 

  11. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986). https://doi.org/10.1103/PhysRevA.33.1134

    Article  CAS  Google Scholar 

  12. Gao, C., Lin, Q., Ni, J., Guo, W., Li, Q.: A nonuniform delay-coordinate embedding-based multiscale predictor for blast furnace systems. IEEE Trans. Control Syst. Technol. (2020). https://doi.org/10.1109/TCST.2020.3023072

    Article  Google Scholar 

  13. Gao, Z.K., Small, M., Kurths, J.: Complex network analysis of time series. EPL (Europhysics Letters) 116(5), 50001 (2017). https://doi.org/10.1209/0295-5075/116/50001

    Article  CAS  Google Scholar 

  14. Giannakis, D., Majda, A.J.: Nonlinear laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. 109(7), 2222–2227 (2012). https://doi.org/10.1073/pnas.1118984109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldberger, A., et al.: The MIT-BIH normal sinus rhythm database. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  16. Gómez-García, J.A., Godino-Llorente, J.I., Castellanos-Dominguez, G.: Non uniform embedding based on relevance analysis with reduced computational complexity: application to the detection of pathologies from biosignal recordings. Neurocomputing 132, 148–158 (2014). https://doi.org/10.1016/j.neucom.2013.01.059

    Article  Google Scholar 

  17. Han, M., Ren, W., Xu, M., Qiu, T.: Nonuniform state space reconstruction for multivariate chaotic time series. IEEE Trans. Cybern. 49(5), 1885–1895 (2018). https://doi.org/10.1109/TCYB.2018.2816657

    Article  PubMed  Google Scholar 

  18. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guidance, Control, Dyn. 8(5), 620–627 (1985). https://doi.org/10.2514/3.20031

    Article  Google Scholar 

  19. Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V., Stefanovska, A.: Surrogate data for hypothesis testing of physical systems. Phys. Rep. 748, 1–60 (2018). https://doi.org/10.1016/j.physrep.2018.06.001

    Article  Google Scholar 

  20. Moody, G.: A new method for detecting atrial fibrillation using RR intervals. Comput. Cardiol. 227–230 (1983)

    Google Scholar 

  21. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001). https://doi.org/10.1109/51.932724

    Article  CAS  PubMed  Google Scholar 

  22. Pan, S., Duraisamy, K.: On the structure of time-delay embedding in linear models of non-linear dynamical systems. Chaos: An Interdisciplinary J. Nonlinear Sci. 30(7), 073135 (2020). https://doi.org/10.1063/5.0010886

  23. Ramdani, S., Casties, J.F., Bouchara, F., Mottet, D.: Influence of noise on the averaged false neighbors method for analyzing time series. Physica D 223(2), 229–241 (2006). https://doi.org/10.1016/j.physd.2006.09.019

    Article  Google Scholar 

  24. Staniszewski, M., Polański, A.: Hankel singular value decomposition as a method of preprocessing the magnetic resonance spectroscopy. arXiv preprint arXiv:2103.15754 (2021). https://doi.org/10.48550/arXiv.2103.15754

  25. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  26. Uzal, L.C., Grinblat, G.L., Verdes, P.F.: Optimal reconstruction of dynamical systems: a noise amplification approach. Phys. Rev. E 84(1), 016223 (2011). https://doi.org/10.1103/PhysRevE.84.016223

  27. Vlachos, I., Kugiumtzis, D.: Nonuniform state-space reconstruction and coupling detection. Phys. Rev. E 82(1), 016207 (2010). https://doi.org/10.1103/PhysRevE.82.016207

  28. Wallot, S., Mønster, D.: Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab. Front. Psychol. 1679 (2018). https://doi.org/10.3389/fpsyg.2018.01679

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana A. Orrego-Metaute .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Restrepo-Uribe, J.P., Orrego-Metaute, D.A., Delgado-Trejos, E., Cuesta-Frau, D. (2022). Uniform and Non-uniform Embedding Quality Using Electrocardiographic Signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics