Skip to main content

PTEN in Immunity

  • Chapter
  • First Online:
PI3K and AKT Isoforms in Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 436))

  • 1068 Accesses

Abstract

The tumor suppressor PTEN (Phosphatase and Tensin homolog deleted on Chromosome 10) executes critical biological functions that limit cellular growth and proliferation. PTEN inhibits activation of the proto-oncogenic PI3K pathway and is required during embryogenesis and to suppress tumor formation and cancer progression throughout life. The critical role that PTEN plays in restraining cellular growth has been validated through the generation of a number of animal models whereby PTEN inactivation invariably leads to tumor formation in a cell-autonomous fashion. However, the increasing understanding of the mechanisms through which the immune system contributes to suppressing tumor progression has highlighted how, in a cell non-autonomous fashion, cancer-associated mutations can indirectly enhance oncogenesis by evading immune cell recognition. Here, in light of the essential role of PTEN in the regulation of immune cell development and function, and based on recent findings showing that PTEN loss can promote resistance to immune checkpoint inhibitors in various tumor types, we re-evaluate our understanding of the mechanisms through which PTEN functions as a tumor suppressor and postulate that this task is achieved through a combination of cell autonomous and non-autonomous effects. We highlight some of the critical studies that have delineated the functional role of PTEN in immune cell development and blood malignancies and propose new strategies for the treatment of PTEN loss-driven diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT:

Adoptive T-cell therapy

AKT:

Protein Kinase B (Xie and Weiskirchen 2020)

AML:

Acute myeloid leukemia

APC:

Antigen-presenting cells

BCR:

B cell receptors

BMDC:

Bone marrow-derived dendritic cells

BTK:

Bruton’s tyrosine kinase

CAC:

Colitis-associated colon cancer

CCL2:

Chemokine (C–C motif) ligand 2

cDC:

Conventional DCs

COVID-19:

Coronavirus disease 2019

CSR:

Class switch recombination

CTLA4:

Cytotoxic T lymphocyte antigen 4

DCs:

Dendritic cells

ERK1/2:

Extracellular signal-regulated kinase 1/2

FDA:

Food and Drug Administration

GBM:

Glioblastoma multiforme

GPCRs:

G-protein coupled receptors

HECT:

Homologous to E6AP C-terminus

HSC:

Hematopoietic stem cells

I3C:

Indole-3-Carbinol

ICOS:

Inducible T-cell COStimulator

IFN:

Interferon

IGFR:

Insulin-like Growth Factor Receptor

IL-12:

Interleukin 12

IR:

Insulin Receptor

IRF3:

Interferon regulatory factor 3

ITK:

Tyrosine-protein kinase ITK/TSK, a.k.a. interleukin-2-inducible T-cell kinase

LCK:

Lymphocyte protein tyrosine kinase

LOH:

Loss of heterozygosity

LPS:

Lipopolysaccharide

MAPK:

Mitogen-Activated Protein Kinase

MEFs:

Mouse embryonic fibroblasts

MHC:

Major histocompatibility complex

mTORC1:

Mechanistic target of rapamycin complex 1

mTORC2:

Mechanistic target of rapamycin complex 2

NEDD4:

Neuronal precursor cell-expressed developmentally downregulated 4

NK cells:

Natural killer cells

PD1:

Programmed cell death protein 1

PDGFR:

Platelet-Derived Growth Factor Receptor

PD-L1:

Programmed death-ligand 1

PD-L2:

Programmed death-ligand 2

PH domain:

Pleckstrin homology (PH) domain

PHTS:

PTEN Hamartoma Tumor Syndrome

PI3K:

Phosphoinositide-3-kinases

PIP3:

Phosphatidylinositol-(3,4,5)-trisphosphate

PTEN:

Phosphatase and Tensin homolog deleted on Chromosome 10

RTKs:

Receptor tyrosine kinases

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

TAA:

Tumor-associated antigens

T-ALL:

T cell Acute Lymphoblastic Leukemia

TH1 cells:

T helper 1 cells

TLR:

Toll-like receptors

TNF:

Tumor Necrosis Factor

Tregs:

Regulatory T cells

TSC:

Tuberous sclerosis complex

VEGF:

Vascular endothelial growth factor

VSV:

Vesicular stomatitis virus

WWP1:

WW Domain Containing E3 Ubiquitin Protein Ligase 1

WWP2:

WW Domain Containing E3 Ubiquitin Protein Ligase 2

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Bonneau D, Longy M (2000) Mutations of the human PTEN gene. Hum Mutat 16:109–122

    Article  CAS  PubMed  Google Scholar 

  • Buckler JL, Walsh PT, Porrett PM, Choi Y, Turka LA (2006) Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J Immunol 177:4262–4266

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Handel N, Ngeow J, Muller J, Huhn M, Yang HT, Heindl M, Berbers RM, Hegazy AN, Kionke J et al (2017) Immune dysregulation in patients with PTEN hamartoma tumor syndrome: analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol 139(607–620):e615

    Google Scholar 

  • Chen P, Zhao D, Li J, Liang X, Chang A, Henry VK, Lan Z, Spring DJ, Rao G, Wang YA et al (2019) symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell 35(868–884):e866

    Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW, Min YH (2003) Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. Br J Haematol 122:454–456

    Article  CAS  PubMed  Google Scholar 

  • Chow JT, Salmena L (2020) Recent advances in PTEN signalling axes in cancer. Faculty Reviews 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277

    Article  CAS  PubMed  Google Scholar 

  • Csolle MP, Ooms LM, Papa A, Mitchell CA (2020) PTEN and other PtdIns(3,4,5)P3 lipid phosphatases in breast cancer. Int J Molecular Sci 21

    Google Scholar 

  • Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H, Marsh DJ, Ritz J, Freedman A, Stiles C et al (1999) PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 8:185–193

    Article  CAS  PubMed  Google Scholar 

  • Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP (1999) Impaired Fas response and autoimmunity in Pten+/- mice. Science 285:2122–2125

    Article  PubMed  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    Article  PubMed  Google Scholar 

  • Eissing M, Ripken L, Schreibelt G, Westdorp H, Ligtenberg M, Netea-Maier R, Netea MG, de Vries IJM, Hoogerbrugge N (2019) PTEN Hamartoma tumor syndrome and immune dysregulation. Transl Oncol 12:361–367

    Article  PubMed  Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K pathway in human disease. Cell 170:605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL et al (2017) Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14:145–155

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau LA, Winter SS et al (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbeek TJ, Naspetti M, Malergue F, Garcon F, Nunes JA, Cleutjens KB, Trapman J, Krimpenfort P, Spits H (2004) The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med 200:883–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbeek TJ, Spits H (2008) T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 22:608–619

    Article  CAS  PubMed  Google Scholar 

  • Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM, Townamchai N, Gerriets VA, Rathmell JC, Sharpe AH et al (2015) Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 16:188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao J, Dragomir AC, Kocabayoglu P, Rahman AH, Chow A, Hashimoto D, Leboeuf M, Kraus T, Moran T, Carrasco-Avino G et al (2014) Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. J Immunol 192:3374–3382

    Article  CAS  PubMed  Google Scholar 

  • Kalbasi A, Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20:25–39

    Article  CAS  PubMed  Google Scholar 

  • Knobbe CB, Lapin V, Suzuki A, Mak TW (2008) The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27:5398–5415

    Article  CAS  PubMed  Google Scholar 

  • Kuroda S, Nishio M, Sasaki T, Horie Y, Kawahara K, Sasaki M, Natsui M, Matozaki T, Tezuka H, Ohteki T et al (2008) Effective clearance of intracellular Leishmania major in vivo requires Pten in macrophages. Eur J Immunol 38:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Kuttke M, Sahin E, Pisoni J, Percig S, Vogel A, Kraemmer D, Hanzl L, Brunner JS, Paar H, Soukup K et al (2016) Myeloid PTEN deficiency impairs tumor-immune surveillance via immune-checkpoint inhibition. Oncoimmunology 5:e1164918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanitis E, Dangaj D, Irving M, Coukos G (2017) Mechanisms regulating T-cell infiltration and activity in solid tumors. Annals Oncol: Official J Eur Soc Med Oncol 28:xii18–xii32

    Google Scholar 

  • Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS, Gilliland DG, Morrison SJ (2010) mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7:593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YR, Chen M, Lee JD, Zhang J, Lin SY, Fu TM, Chen H, Ishikawa T, Chiang SY, Katon J et al (2019) Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364

    Google Scholar 

  • Lee YR, Chen M, Pandolfi PP (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 19:547–562

    Article  CAS  PubMed  Google Scholar 

  • Leong JW, Schneider SE, Sullivan RP, Parikh BA, Anthony BA, Singh A, Jewell BA, Schappe T, Wagner JA, Link DC et al (2015) PTEN regulates natural killer cell trafficking in vivo. Proc Natl Acad Sci USA 112:E700-709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhu M, Pan R, Fang T, Cao YY, Chen S, Zhao X, Lei CQ, Guo L, Chen Y et al (2016) The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol 17:241–249

    Article  CAS  PubMed  Google Scholar 

  • Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21:183–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN, Chen J (2011) WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol 13:728–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh DJ, Coulon V, Lunetta KL, Rocca-Serra P, Dahia PL, Zheng Z, Liaw D, Caron S, Duboue B, Lin AY et al (1998) Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 7:507–515

    Article  CAS  PubMed  Google Scholar 

  • McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morotti A, Panuzzo C, Crivellaro S, Carra G, Torti D, Guerrasio A, Saglio G (2015) The role of PTEN in myeloid malignancies. Hematol Rep 7:5844

    Article  PubMed  PubMed Central  Google Scholar 

  • Murira A, Lamarre A (2016) Type-I interferon responses: from friend to foe in the battle against chronic viral infection. Front Immunol 7:609

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95:13513–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 94:9052–9057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton RH, Lu Y, Papa A, Whitcher GH, Kang YJ, Yan C, Pandolfi PP, Turka LA (2015) Suppression of T-cell lymphomagenesis in mice requires PTEN phosphatase activity. Blood 125:852–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, Cocciadiferro D, Agolini E, Colona VL, Rizzacasa B et al (2021) Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis 12:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa A, Pandolfi PP (2019) The PTEN(-)PI3K axis in cancer. Biomolecules 9

    Google Scholar 

  • Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, Lunardi A, Webster K, Ng C, Newton RH et al (2014) Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 157:595–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa AP, Pandolfi PP (2016). Phosphatase-independent functions of the tumor suppressor PTEN. Protein Tyrosine Phosphatases Cancer, 247–260

    Google Scholar 

  • Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC et al (2007) Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6:202–216

    Article  CAS  PubMed  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96:1563–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathaliyawala T, O’Gorman WE, Greter M, Bogunovic M, Konjufca V, Hou ZE, Nolan GP, Miller MJ, Merad M, Reizis B (2010) Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33:597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  • Shojaee S, Chan LN, Buchner M, Cazzaniga V, Cosgun KN, Geng H, Qiu YH, von Minden MD, Ernst T, Hochhaus A et al (2016) PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nat Med 22:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H (2015) Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 16:178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soond DR, Garcon F, Patton DT, Rolf J, Turner M, Scudamore C, Garden OA, Okkenhaug K (2012) Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. J Immunol 188:5935–5943

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW (2000) High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice. Can Res 60:3605–3611

    CAS  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KK, Jia Y, Zhu D, Simms BT, Jo H, Hattori H, You J, Mizgerd JP, Luo HR (2007) Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109:4028–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I, Ho A, Wakeham A, Itie A, Khoo W et al (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biol: CB 8:1169–1178

    Article  CAS  Google Scholar 

  • Suzuki A, Kaisho T, Ohishi M, Tsukio-Yamaguchi M, Tsubata T, Koni PA, Sasaki T, Mak TW, Nakano T (2003) Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med 197:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M et al (2001) T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14:523–534

    Article  CAS  PubMed  Google Scholar 

  • Taylor H, Laurence ADJ, Uhlig HH (2019) The role of PTEN in innate and adaptive immunity. Cold Spring Harbor Perspect Med 9

    Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341

    Article  CAS  PubMed  Google Scholar 

  • Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766–770

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo C et al (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128:129–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Weiskirchen R (2020) What does the “AKT” stand for in the name “AKT Kinase”? Some historical comments. Frontiers Oncol 10:1329

    Article  Google Scholar 

  • Yang WC, Collette Y, Nunes JA, Olive D (2000) Tec kinases: a family with multiple roles in immunity. Immunity 12:373–382

    Article  CAS  PubMed  Google Scholar 

  • Yehia L, Ngeow J, Eng C (2019) PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Investig 129:452–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482

    Article  CAS  PubMed  Google Scholar 

  • Yip HYK, Chee A, Ang CS, Shin SY, Ooms LM, Mohammadi Z, Phillips WA, Daly RJ, Cole TJ, Bronson RT et al (2020) Control of glucocorticoid receptor levels by PTEN establishes a failsafe mechanism for tumor suppression. Mol Cell 80(279–295):e278

    Google Scholar 

  • Yip HYK, Papa A (2021) Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells 10

    Google Scholar 

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM et al (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–522

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 25:462–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Hattori H, Jo H, Jia Y, Subramanian KK, Loison F, You J, Le Y, Honczarenko M, Silberstein L et al (2006) Deactivation of phosphatidylinositol 3,4,5-trisphosphate/Akt signaling mediates neutrophil spontaneous death. Proc Natl Acad Sci USA 103:14836–14841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

A.P. is supported by a Victorian Cancer Agency (VCA) Mid-Career Research Fellowship (MCRF20027). This work is supported in part by a grant from the PTEN Research Foundation to P.P.P. Figures were created with BioRender.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonella Papa or Pier Paolo Pandolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papa, A., Pandolfi, P.P. (2022). PTEN in Immunity. In: Dominguez-Villar, M. (eds) PI3K and AKT Isoforms in Immunity . Current Topics in Microbiology and Immunology, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-06566-8_4

Download citation

Publish with us

Policies and ethics