Skip to main content

Reconfigurable Arduino Shield for Biosignal Acquisition

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

There are several situations where it is necessary to acquire analog signals, like sensors outputs and bioelectrical signals, with different amplitudes and frequency ranges. The FPAA (Field Programmable Analog Array) is a semiconductor device that allows the creation of several analog circuits. The Arduino is a platform for rapid development with microcontrollers, well known and widely used to build experimental and commercial equipment. Given the above, the objective of this work was to create a hardware board (shield) and a software library to use an FPAA in conjunction with Arduino boards. In one test, we implemented a band-pass filter and obtained between the projected and measured frequency response an average error of 0.027 dB (SD = 0.163 dB). The maximum error was 0.265 dB. In another test, we implemented a circuit to capture the ECG signal. The results of the ECG test were satisfactory. This research introduces a significant contribution to bioelectrical signal acquisition since similar works do not exist.

Supported by the Federal University of Mato Grosso do Sul (UFMS) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AN121E04, AN221E04 field programmable analog arrays - user manual. Technical Report, UM021200-U007g. Anadigm, Inc. (2003). https://www.anadigm.com/_doc/UM021200-U007.pdf

  2. AN221E04 dynamically reconfigurable FPAA with enhanced i/o. Technical Report, DS030100-U006c. Anadigm, Inc. (2003). http://www.anadigm.com/_doc/DS030100-U006.pdf

  3. AnadigmDesigner 2 user manual. Technical Report, UM020800-U001o. Anadigm, Inc. (2004). https://www.anadigm.com/_doc/UM020800-U001.pdf

  4. ATmega640/V-1280/V-1281/V-2560/V-2561/V - 8-bit Atmel microcontroller with 16/32/64KB in-system programmable flash. Technical Report, 2549Q-AVR-02/2014. Atmel Corporation (2014). https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf, rev.2549Q

  5. ATmega48A/PA/88A/PA/168A/PA/328/P - megaAVR data sheet. Technical Report, DS40002061A. Microchip Technology Inc. (2018). http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf, rev. A

  6. Arduino - home, June 2021. https://www.arduino.cc

  7. Ain, K., Wibowo, R., Soelistiono, S., Muniroh, L., Ariwanto, B.: Design and development of a low-cost Arduino-based electrical bioimpedance spectrometer. J. Med. Signals Sens. 10(2), 125–133 (2020). https://doi.org/10.4103/jmss.JMSS_24_19,http://www.jmssjournal.net/article.asp?issn=2228-7477;year=2020;volume=10; issue=2;spage=125;epage=133;aulast=Ain;t=6

  8. American National Standards Institute/Association for the Advancement of Medical Instrumentation - ANSI/AAMI, United States: EC13:2002 - Cardiac monitors, heart rate meters, and alarms (2002)

    Google Scholar 

  9. Chen, C.L., Chen, T.R., Chiu, S.H., Urban, P.L.: Dual robotic arm “production line’’ mass spectrometry assay guided by multiple Arduino-type microcontrollers. Sens. Actuators B Chem. 239, 608–616 (2017)

    Article  CAS  Google Scholar 

  10. Cressey, D.: Age of the Arduino. Nature 544(7648), 125–126 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. Călinoiu, D., Ionel, R., Lascu, M., Cioablă, A.: Arduino and labVIEW in educational remote monitoring applications. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–5 (2014)

    Google Scholar 

  12. Dioren Rumpa, L., Suluh, S., Hendrika Ramopoly, I., Jefriyanto, W.: Development of ECG sensor using Arduino Uno and e-health sensor platform: mood detection from heartbeat. In: Journal of Physics. Conference Series, vol. 1528, no. 1, p. 12043 (2020)

    Google Scholar 

  13. Jahns, M., et al.: An arduino based mössbauer spectrometer. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 940, 116–118 (2019). https://doi.org/10.1016/j.nima.2019.06.003, http://www.sciencedirect.com/science/article/pii/S0168900219308204

  14. Jumaat, S.A., Othman, M.H.: Solar energy measurement using Arduino. In: MATEC Web of Conferences, vol. 150, p. 01007 (2018). https://doi.org/10.1051/matecconf/201815001007

  15. Kay, M.S., Iaione, F.: Reconfigurable embedded system for ECG signal acquisition. In: Proceedings of the 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, CBMS 2015, pp. 25–26. IEEE Computer Society, USA (2015). https://doi.org/10.1109/CBMS.2015.58

  16. Mahajan, R., Bansal, D.: Real time EEG based cognitive brain computer interface for control applications via Arduino interfacing. Procedia Comput. Sci. 115, 812–820 (2017). https://doi.org/10.1016/j.procs.2017.09.158, http://www.sciencedirect.com/science/article/pii/S1877050917319919. 7th International Conference on Advances in Computing & Communications, ICACC-2017, 22–24 August 2017, Cochin, India

  17. Wijaya, N.H., Rahmat, J., Wibowo, S.A.: Modification of Holter ECG monitoring based on Arduino Uno with data storage. Int. J. Recent Technol. Eng. 8(4), 2819–2824 (2019)

    Google Scholar 

  18. Rahmatillah, A.: Ataulkarim: IIR digital filter design for powerline noise cancellation of ECG signal using Arduino platform. In: Journal of Physics. Conference Series, vol. 853, no. 1, p. 12009 (2017)

    Google Scholar 

  19. Rosa, T.R., Betim, F.S., de Queiroz Ferreira, R.: Development and application of a labmade apparatus using open-source “Arduino’’ hardware for the electrochemical pretreatment of boron-doped diamond electrodes. Electrochimica Acta 231, 185–189 (2017)

    Article  CAS  Google Scholar 

  20. Saptono, D., Wahyudi, B., Irawan, B.: Design of EEG signal acquisition system using Arduino MEGA1280 and EEGAnalyzer. In: MATEC Web of Conferences, vol. 75, p. 4003 (2016)

    Google Scholar 

  21. Severance, C.: Massimo Banzi: building Arduino. Computer 47(01), 11–12 (2014). https://doi.org/10.1109/MC.2014.19

    Article  Google Scholar 

  22. Sheinin, A., Lavi, A., Michaelevski, I.: StimDuino: an Arduino-based electrophysiological stimulus isolator. J. Neurosci. Meth. 243, 8–17 (2015). https://doi.org/10.1016/j.jneumeth.2015.01.016, http://www.sciencedirect.com/science/article/pii/S0165027015000175

  23. Van, S.N., Nguyen, D.T., Hoai, G.N.: Development of a low-cost Arduino-based 12-lead ECG acquisition system and accompanied labview application. Int. J. Eng. Adv. Technol. 9(1), 1641–1648 (2019)

    Article  Google Scholar 

  24. Zachariadou, K., Yiasemides, K., Trougkakos, N.: A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells. Eur. J. Phys. 33(6), 1599–1610 (2012). https://doi.org/10.1088/0143-0807/33/6/1599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Iaione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Souza, L.F., Iaione, F., Ju, S.T. (2022). Reconfigurable Arduino Shield for Biosignal Acquisition. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics