Skip to main content

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 55))

Abstract

This chapter details the history of the invention of the “precursor model” concept. We reveal its theoretical origins and heuristic scope in regard to the design of teaching programmes and teaching practices, notably the choice of physical situations explored, semiotic systems used to represent them, and the management of linguistic interactions with pupils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gérard Lemeignan (1932–2017).

  2. 2.

    This exemplary story of a process of transforming an area of teaching supported by a university research group involving teachers interested in changing pedagogical practices is reported in a book (Goffard & Weil-Barais, 2005).

  3. 3.

    Jean-Louis Martinand played an essential role in the development of science and technology didactics rooted in the study of teaching content and teaching practices in reference to an epistemological approach to knowledge and social practices (Martinand, 1986).

  4. 4.

    Libre Parcours” collection, published by Hachette.

  5. 5.

    We use the past tense as the publisher quickly stopped distributing these works although they still constitute a source of inspiration, judging by their continued circulation on sites selling old works.

  6. 6.

    In the decades following the 1968 “revolution”, in France, university academics were allowed great freedom as regards their choice of research subjects and links with research laboratories. At the time, I was teaching cognitive and developmental psychology at Université Paris 8 (the university where I held a post). However, I was able to conduct my research within a laboratory based at Université Paris 7 (LIREST Inter-university Research Laboratory on Scientific and Technological Education), aimed at providing guidance on the reform of science teaching, in particular the introduction of sciences in lower secondary school. This laboratory was included in a network of teams specialising in didactics research, a newly emerging field of research at that time.

  7. 7.

    This led to research specialisation by field of knowledge and skill (learning numbers, arithmetic operations, reading, etc.).

  8. 8.

    The “conceptual field” idea expounded by Gérard Vergnaud takes into account the fact that concepts are interconnected. A conceptual field is made up of the set of concepts used to deal with a class of situations. The complete work of Gérard Vergnaud can be found on the website https://gerardvergnaud.wordpress.com

  9. 9.

    These ideas were developed in an article published in 1990 (Weil-Barais & Lemeignan, 1990).

  10. 10.

    Within the LIREST, these problems were studied and critiqued by Andrée Dumas Carré, Michel Caillot and Monique Goffard; these researchers contributed in France to the transformation of the problems used for training and assessment purposes.

  11. 11.

    Many studies were conducted on the cognitive obstacles pertaining to concepts grouped under the expression “cognitive change”.

  12. 12.

    Reference to this work can be found in an article published in 1994 (Lemeignan & Weil-Barais, 1994).

  13. 13.

    This research is discussed in an article published in “Education Permanente” magazine: Que. faire des représentations des élèves? [What to make of pupils’ representations?] (Weil-Barais, 1994c).

  14. 14.

    In addition to the discussions within our little research group, which involved many students, mention should be made of the role played by Jean-Louis Martinand and all the participants in LIREST’s weekly seminar. Without their critical rigour, we would undoubtedly not have succeeded in formulating our proposals in such detail.

  15. 15.

    A detailed description of this model and the experimental situations used is given in an article published in the International Journal of Science Education (Lemeignan & Weil-Barais, 1994).

References

  • Caillot, M. (1991). The design of a learning environment in mechanics: Two case studies. In A. Tiberghien & Mandl (Eds.), Intelligent learning environment and knowledge acquisition in physics (pp. 217–228). Springer.

    Google Scholar 

  • Cassirer, E. (1910/1977). Substance et Fonction [Substance and Function]. Paris: Minuit.

    Google Scholar 

  • Cauzinille-Marmèche, E., Friemel, Ε., Mathieu, J., & Weil-Barais, A. (1979). Approche du raisonnement expérimental [Approach to experimental reasoning]. Bulletin de Psychologie, XXXII(340), 665–674.

    Google Scholar 

  • Cauzinille-Marmèche, Ε., Mathieu, J., & Weil-Barais, A. (1983). Les savants en herbe [Budding scientists]. Peter Lang.

    Google Scholar 

  • Cauzinille-Marmèche, E., Méheut, M., Séré, M. G., & Weil-Barais, A. (1985). The influence of a priori ideas on the experimental approach. Science Education, 69, 201–211.

    Google Scholar 

  • Dumas Carré, A., & Weil-Barais, A. (Éds) (1998). Tutelle et médiation dans l´éducation scientifique [Tutoring and mediation in Science Education]. Berne: Peter Lang.

    Google Scholar 

  • Flavell, J. H. (Ed.). (1977). Cognitive development. Prentice-Hall.

    Google Scholar 

  • Franceschelli, S., & Weil-Barais, A. (1998). La routine conversationnelle comme stratégie de changement conceptuel : apprendre à modéliser en mécanique [Conversational routine as a conceptual change in Mechanics]. In A. Dumas Carré & A. Weil-Barais (Eds.), Tutelle et Médiation dans l’éducation scientifique [Tutoring and mediation in Science Education] (pp. 211–238). Peter Lang.

    Google Scholar 

  • Franceschelli, S., & Weil-Barais, A. (1999). Interactions professeur-élèves dans la construction d’un modèle en mécanique [Teacher-pupil interaction in the construction of a model in mechanics]. In M. Gilly, J. P. Roux, & A. Trognon (Eds.), Apprendre dans l’interaction: analyse des médiations sémiotiques [Learning in interaction: Semiotic mediation analysis] (pp. 241–257). Presses Universitaires de Nancy.

    Google Scholar 

  • Goffard, Μ., & Weil-Barais, Α. (Eds.). (2005). Enseigner et apprendre les sciences [Science teaching and learning]. Armand Colin.

    Google Scholar 

  • Inhelder, Β., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. Basic Books.

    Google Scholar 

  • Kholer, A. (2020). Approches psychologiques de situations de malentendu dans des activités de didactique des sciences [Psychological approaches to situations of misunderstanding in Science teaching activities]. Thesis, Université de Neuchâtel, Switzerland.

    Google Scholar 

  • Larochelle, M., & Desautels, J. (1992). Autour de l’idée de science. Itinéraires cognitifs d’étudiants et d’étudiantes [The notion of Science. Students’ cognitive routes]. Presses de l’Université Laval & De Boeck-Wesmael.

    Google Scholar 

  • Lemeignan, G., & Weil-Barais, A. (1989). Enseignement et apprentissage d’un concept par les élèves: La quantité de mouvement en classe de seconde [Teaching and learning of a concept by students: The quantity of motion in the second grade]. Bulletin de l’Union des Physiciens, 716, 1013–1030.

    Google Scholar 

  • Lemeignan, G., & Weil-Barais, A. (1993). Construire des concepts en physique; l’enseignement de la mécanique [Concept construction in Physics: Teaching Mechanics]. Hachette.

    Google Scholar 

  • Lemeignan, G., & Weil-Barais, A. (1994). Developmental approach to cognitive change in mechanics. International Journal of Science Education, 16(1), 99–120.

    Article  Google Scholar 

  • Lopes, J. B., Costa, Ν., Weil-Barais, Α., & Dumas-Carré, Α. (1999). Évaluation de la maîtrise des concepts de la mécanique chez des étudiants et des professeurs [Assessment of students’ and teachers’ mastery of mechanics concepts]. Didaskalia, 14, 11–38.

    Google Scholar 

  • Martinand, J. L. (1986). Connaître et transformer la matière ; des objectifs pour l’initiation aux sciences et techniques [Knowing and transform matter; Objectives for an introduction to Science and Technology]. Peter Lang.

    Google Scholar 

  • Resta-Schweitzer, M., & Weil-Barais, A. (2006). Education scientifique et développement intellectuel du jeune enfant [Science education and the young child’s intellectual development]. Review of Science, Mathematics and ICT Education, 1(1), 63–82.

    Google Scholar 

  • Resta-Schweitzer, M., & Weil-Barais, A. (2009). Initiation scientifique et développement intellectuel de l’enfant à l’âge préscolaire [The preschool child’s intellectual development and introduction to Science]. Les dossiers des Sciences de l’Education, 21, 101–113.

    Google Scholar 

  • Rogoff, B., & Lave, J. (Eds.). (1984). Everyday cognition: Its development in social context. Harvard University Press.

    Google Scholar 

  • Rosch, E. (1978). Principles of categorisation. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27–48). Lawrence Erlbaum.

    Google Scholar 

  • Vergnaud, G. (1987). Les fonctions de l’action et de la symbolisation dans la formation des connaissances chez l’enfant [The functions of action and symbolization in the formation of knowledge in children]. In J. Piaget, P. Mounoud, & J. P. Bronckart (Eds.), Psychologie, Encyclopédie La Pléiade (pp. 821–843). Galimard.

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels [The theory of conceptual fields]. Recherches en Didactique des Mathématiques, 10(2/3), 133–170.

    Google Scholar 

  • Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94.

    Article  Google Scholar 

  • Weil-Barais, A. (1994a). Les apprentissages en sciences physiques [Learning processes in Physical Sciences]. In G. Vergnaud (Ed.), Apprentissages et didactiques (pp. 95–126). Hachette.

    Google Scholar 

  • Weil-Barais, A. (1994b). Heuristic value of the notion of zone of proximal development in the study of child and adolescent construction of concepts in physics. European Journal of Psychology of Education, 9(4), 367–383.

    Article  Google Scholar 

  • Weil-Barais, A. (1994c). Que faire des représentations des élèves? [What to make of pupils' representations?] Education Permanente, 119, 79–88.

    Google Scholar 

  • Weil-Barais, A., & Lemeignan, G. (1990). Apprentissage de concepts et modélisation [Learning models and modelling]. European Journal of Psychology of Education, 5, 391–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weil-Barais, A. (2022). What Is a Precursor Model?. In: Boilevin, JM., Delserieys, A., Ravanis, K. (eds) Precursor Models for Teaching and Learning Science During Early Childhood. Contemporary Trends and Issues in Science Education, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-031-08158-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08158-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08157-6

  • Online ISBN: 978-3-031-08158-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics