Skip to main content

Exploring Ductal Carcinoma In-Situ to Invasive Ductal Carcinoma Transitions Using Energy Minimization Principles

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

Abstract

Ductal carcinoma in-situ (DCIS) presents a risk of transformation to malignant intraductal carcinoma (IDC) of the breast. Three tumor suppressor genes RB, BRCA1 and TP53 are critical in curtailing the progress of DCIS to IDC. The complex transition process from DCIS to IDC involves acquisition of intracellular genomic aberrations and consequent changes in phenotypic characteristics and protein expression level of the cells. The spatiotemporal dynamics associated with breech of epithelial basement membrane and subsequent invasion of stromal tissues during the transition is less understood. We explore the emergence of invasive behavior in benign tumors, emanating from altered expression levels of the three critical genes. A multiscale mechanistic model based on Glazier-Graner-Hogeweg method-based modelling (GGH) is used to unravel the phenotypical and biophysical dynamics promoting the invasive nature of DCIS. Ductal morphologies including comedo, hyperplasia and DCIS, evolve spontaneously from the interplay between the gene activity parameters in the simulations. The spatiotemporal model elucidates the cause-and-effect relationship between cell-level biological signaling and tissue-level biophysical response in the ductal microenvironment. The model predicts that BRCA1 mutations will act as a facilitator for DCIS to IDC transitions while mutations in RB act as initiator of such transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorringe, K.L., Fox, S.B.: Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front Oncol 7, 248 (2017)

    Article  Google Scholar 

  2. Cowell, C.F., et al.: Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 7, 859–869 (2013)

    Article  Google Scholar 

  3. Ma, X.-J., et al.: Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. 100, 5974–5979 (2003)

    Article  Google Scholar 

  4. Aubele, M.M., et al.: Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn. Mol. Pathol. 9, 14–19 (2000)

    Article  Google Scholar 

  5. Volinia, S., et al.: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc. Natl. Acad. Sci. 109, 3024–3029 (2012)

    Article  Google Scholar 

  6. Boughey, J.C., Gonzalez, R.J., Bonner, E., Kuerer, H.M.: Current treatment and clinical trial developments for ductal carcinoma in situ of the breast. Oncologist 12, 1276–1287 (2007)

    Article  Google Scholar 

  7. Kurbel, S., Marjanović, K., Dmitrović, B.: A model of immunohistochemical differences between invasive breast cancers and DCIS lesions tested on a consecutive case series of 1248 patients. Theor. Biol. Med. Model. 11, 29 (2014)

    Article  Google Scholar 

  8. Brentani: Concomitant expression of epithelial-mesenchymal transition biomarkers in breast ductal carcinoma: association with progression. Oncology Reports 23 (2009)

    Google Scholar 

  9. Megha, T., et al.: p53 mutation in breast cancer. Correlation with cell kinetics and cell of origin. J. Clin. Pathol. 55, 461–466 (2002)

    Article  Google Scholar 

  10. Gauthier, M.L., et al.: Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12, 479–491 (2007)

    Article  Google Scholar 

  11. Witkiewicz, A.K., et al.: Association of RB/p16-pathway perturbations with DCIS recurrence: dependence on tumor versus tissue microenvironment. Am. J. Pathol. 179, 1171–1178 (2011)

    Article  Google Scholar 

  12. Wang, X., et al.: p53 alteration in morphologically normal/benign breast luminal cells in BRCA carriers with or without history of breast cancer. Hum Pathol 68, 22–25 (2017)

    Article  Google Scholar 

  13. Kumar, P., et al.: Cooperativity of Rb, Brca1, and p53 in malignant breast cancer evolution. PLoS Genet. 8, e1003027 (2012)

    Article  Google Scholar 

  14. Palm, M.M., Merks, R.M.: Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell3D or VirtualLeaf. Tissue Morphogenesis: Methods and Protocols 301–322 (2015)

    Google Scholar 

  15. Anderson, A.R., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  Google Scholar 

  16. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8, 245–257 (2007)

    Article  Google Scholar 

  17. Bailey, A.M., Thorne, B.C., Peirce, S.M.: Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35, 916–936 (2007)

    Article  Google Scholar 

  18. Qiao, M., Wu, D., Carey, M., Zhou, X., Zhang, L.: Multi-scale agent-based multiple myeloma cancer modeling and the related study of the balance between osteoclasts and osteoblasts. PLoS ONE 10, e0143206 (2015)

    Article  Google Scholar 

  19. Sun, X., Zhang, L., Tan, H., Bao, J., Strouthos, C., Zhou, X.: Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: incorporating EGFR signaling pathway and angiogenesis. BMC Bioinformatics 13, 218 (2012)

    Article  Google Scholar 

  20. Macklin, P., Edgerton, M.E., Thompson, A.M., Cristini, V.: Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J. Theor. Biol. 301, 122–140 (2012)

    Article  MathSciNet  Google Scholar 

  21. Boghaert, E., Radisky, D.C., Nelson, C.M.: Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state. PLoS Comput. Biol. 10, e1003997 (2014)

    Article  Google Scholar 

  22. Swat, M.H., Thomas, G.L., Belmonte, J.M., Shirinifard, A., Hmeljak, D., Glazier, J.A.: Multi-scale modeling of tissues using CompuCell 3D. Methods Cell Biol. 110, 325–366 (2012)

    Article  Google Scholar 

  23. Rattan, S.I.: Theories of biological aging: genes, proteins, and free radicals. Free Radical Res. 40, 1230–1238 (2006)

    Article  Google Scholar 

  24. Davis, J.D., Lin, S.-Y.: DNA damage and breast cancer. World J. Clin. Oncol. 2, 329–338 (2011)

    Article  Google Scholar 

  25. Gaweł-Bęben, K., et al.: TMEFF2 shedding is regulated by oxidative stress and mediated by ADAMs and transmembrane serine proteases implicated in prostate cancer. Cell Biology International n/a-n/a

    Google Scholar 

  26. Norton, K.-A., Popel, A.S.: An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location. J. R. Soc. Interface 11, 20140640 (2014)

    Article  Google Scholar 

  27. Giacinti, C., Giordano, A.: RB and cell cycle progression. Oncogene 25, 5220–5227 (2006)

    Article  Google Scholar 

  28. Yoshida, K., Miki, Y.: Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 95, 866–871 (2004)

    Article  Google Scholar 

  29. Fridman, J.S., Lowe, S.W.: Control of apoptosis by p53. Oncogene 22, 9030 (2003)

    Article  Google Scholar 

  30. Corbin, E.A., Adeniba, O.O., Cangellaris, O.V., King, W.P., Bashir, R.: Evidence of differential mass change rates between human breast cancer cell lines in culture. Biomed. Microdevice 19(1), 1–7 (2017). https://doi.org/10.1007/s10544-017-0151-x

    Article  Google Scholar 

  31. Starcevic, S.L., Diotte, N.M., Zukowski, K.L., Cameron, M.J., Novak, R.F.: Oxidative DNA damage and repair in a cell lineage model of human proliferative breast disease (PBD). Toxicol. Sci. 75, 74–81 (2003)

    Article  Google Scholar 

  32. Knudsen, E.S., et al.: Retinoblastoma and phosphate and tensin homolog tumor suppressors: impact on ductal carcinoma in situ progression. JNCI: J. Natl. Can. Inst. 104, 1825–1836 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek M. Sheraton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheraton, V.M., Ma, S. (2022). Exploring Ductal Carcinoma In-Situ to Invasive Ductal Carcinoma Transitions Using Energy Minimization Principles. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics