Skip to main content

n-type B-N Co-doping and N Doping in Diamond from First Principles

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

Abstract

The boron-nitrogen (B-N) co-doped diamond with different structures have been studied by the first-principle calculations to find possible defect structures to achieve effective n-type doping. Nitrogen doped diamond itself shows the characteristics of direct bandgap, however its big gap between donor level and conduction band minimum (CBM) may contribute to its undesirable ionization energy. We found for the first time B-N co-doping as a promising method to overcome the disadvantages of N doping in diamond. B-N co-doped diamond, especially the B-N3 defect, retains the characteristics of direct band gap, and has the advantages of low ionization energy and low formation energy. The effective mass of electron/ hole of B-N co-doped diamond is less than that of pure diamond, indicating better conductivity in diamond. The N-2p states play vital role in the conduction band edge of B-N3 co-doped diamond. Hence, the B-N3 has outstanding performance and is expected to become a promising option for N-type doping in diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czelej, K., Spiewak, P., Kurzydowski, K.J.: Electronic structure and N-type doping in diamond from first principles. Mrs Adv. 1(16), 1093–1098 (2016)

    Article  Google Scholar 

  2. Shah, Z.M., Mainwood, A.: A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam. Relat. Mater. 17(7–10), 1307–1310 (2008)

    Article  Google Scholar 

  3. Kato, H., et al.: Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diam. Relat. Mater. 27(28), 19–22 (2012)

    Google Scholar 

  4. Sque, S.J., Jones, R., Goss, J.P., et al.: Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes. Phys. Rev. Lett. 92(1), 017402 (2004)

    Google Scholar 

  5. Prins, J.F.: n-type semiconducting diamond by means of oxygen-ion implantation. Phys. Rev. 61(11), 7191–7194 (2000)

    Article  Google Scholar 

  6. Kajihara, S.A., et al.: Nitrogen and potentialn-type dopants in diamond. Phys. Rev. Lett. 66(15), 2010–2013 (1991)

    Google Scholar 

  7. Goss, J.P., Briddon, P.R.: Theoretical study of Li and Na as n-type dopants for diamond. Phys. Rev. 75(7), 2978–2984 (2007)

    Google Scholar 

  8. Eaton, S.C., Anderson, A.B., Angus, J.C., et al.: Co-doping of diamond with boron and sulfur. Electrochem. Solid-State Lett. 5(8), G65 (2002)

    Article  Google Scholar 

  9. Tang, L., Yue, R., et al.: N-type B-S co-doping and S doping in diamond from first principles. Carbon Int. J. Sponsored Am. Carbon Soc. 130, 458–465 (2018)

    Google Scholar 

  10. Zhou, D., Tang, L., Geng, Y., et al.: First-principles calculation to N-type Li N Co-doping and Li doping in diamond. Diam. Related Mater. 110, 108070 (2020)

    Google Scholar 

  11. Croot, A., Othman, M.Z., Conejeros, S., et al.: A theoretical study of substitutional boron-nitrogen clusters in diamond. J. Phys. Condens. Matt. 30(42) (2018)

    Google Scholar 

  12. Chadi, D.J.: Special points for Brillouin-zone integrations. Phys. Rev. 16(4), 1746–1747 (1977)

    Article  Google Scholar 

  13. Spiewak, P., Kurzydlowski, K., et al.: Electronic structure of substitutionally doped diamond: Spin-polarized, hybrid density functional theory analysis. diamond & related materials, 2017.Walle V D , Chris G . First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004)

    Google Scholar 

  14. Ullah, M., Ahmed, E., Hussain, F., Rana, A.M. , Raza, R., Ullah, H.: Electronic structure calculations of oxygen-doped diamond using DFT technique. Microelectr. Eng. 146(1), 26–31 (2015)

    Google Scholar 

  15. Freysoldt, C., Grabowski, B., Hickel, T., et al.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1) (2014)

    Google Scholar 

  16. Walle, V.D., Chris, G.: First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004)

    Article  Google Scholar 

  17. Goss, J.P., Briddon, P.R., Eyre, R.J.: Donor levels for selected n-type dopants in diamond: a computational study of the effect of supercell size. Phys. Rev. Condens. Matt. Mater. Phys. 74(24), 245217.1–245217.7 (2006)

    Google Scholar 

  18. Koizumi, S., Kamo, M., Sato, Y., et al.: Growth and characterization of phosphorous doped {111 homoepitaxial diamond thin film. FASEB J. 9(8), 651–658 (1997)

    Google Scholar 

  19. Miyazaki, T., Okushi, H.A.: A theoretical study of a sulfur impurity in diamond. Diam. Relat. Mater. 10(3–7), 449–452 (2001)

    Google Scholar 

  20. Moussa, J.E. , Marom, N. , Sai, N., Chelikowsky, J.R.: Theoretical design of a shallow donor in diamond by lithium-nitrogen codoping. Phys. Rev. Lett. 108(22), 226404.1–226404.5 (2012)

    Google Scholar 

  21. Schwingenschloegl, U., Chroneos, A., Schuster, C., et al.: Doping and cluster formation in diamond. J. Appl. Phys. 110(V110N5), 162 (2011)

    Google Scholar 

  22. Jing, Z., Li, R., Wang, X., et al.: Study on the microstructure and electrical properties of boron and sulfur codoped diamond films deposited using chemical vapor deposition. J. Nanomater 2014(21), 4338–4346 (2014)

    Google Scholar 

  23. Eaton, S.C., Anderson, A.B., Angus, J.C., et al.: Diamond growth in the presence of boron and sulfur. Diam. Relat. Mater. 12(10–11), 1627–1632 (2003)

    Article  Google Scholar 

  24. Nava, F., Canali, C., Jacoboni, C., et al.: Electron effective masses and lattice scattering in natural diamond. Solid State Commun. 33(4), 475–477 (1980)

    Article  Google Scholar 

  25. Naka, N., Fukai, K., Handa, Y., et al.: Direct measurement via cyclotron resonance of the carrier effective masses in pristine diamond. Phys. Rev. 88(3), 035205 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruifeng Yue or Yan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, D., Tang, L., Zhang, J., Yue, R., Wang, Y. (2022). n-type B-N Co-doping and N Doping in Diamond from First Principles. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics