Skip to main content

Evaluating Glioma Growth Predictions as a Forward Ranking Problem

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

The problem of tumor growth prediction is challenging, but promising results have been achieved with both model-driven and statistical methods. In this work, we present a framework for the evaluation of growth predictions that focuses on the spatial infiltration patterns, and specifically evaluating a prediction of future growth. We propose to frame the problem as a ranking problem rather than a segmentation problem. Using the average precision as a metric, we can evaluate the results with segmentations while using the full spatiotemporal prediction. Furthermore, by applying a biophysical tumor growth model to 21 patient cases we compare two schemes for fitting and evaluating predictions. By carefully designing a scheme that separates the prediction from the observations used for fitting the model, we show that a better fit of model parameters does not guarantee a better predictive power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alnaes, M.S., et al.: The FEniCS Project Version 1.5 3(100), 9–23 (2015)

    Google Scholar 

  2. Angeli, S., Emblem, K.E., Due-Tonnessen, P., Stylianopoulos, T.: Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI. NeuroImage Clin. 20, 664–673 (2018)

    Article  Google Scholar 

  3. Angelini, E., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.: Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev. 3(4), 262–276 (2007)

    Article  Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv 124 (2018)

    Google Scholar 

  5. Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_13

    Chapter  Google Scholar 

  6. Clatz, O., et al.: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging 24(10), 1334–1346 (2005)

    Article  Google Scholar 

  7. Elazab, A., et al.: Post-surgery glioma growth modeling from magnetic resonance images for patients with treatment. Sci. Rep. 7(1), 1–13 (2017)

    Article  Google Scholar 

  8. Elazab, A., et al.: GP-GAN: brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images. Neural Netw. 132, 321–332 (2020)

    Article  Google Scholar 

  9. Ezhov, I., et al.: Neural parameters estimation for brain tumor growth modeling. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 787–795. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_87

    Chapter  Google Scholar 

  10. Gaw, N., et al.: Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  11. Gholami, A., Mang, A., Biros, G.: Mathematical Biology An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas. J. Math. Biol. 72, 409–433 (2016)

    Article  MathSciNet  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2020)

    Article  Google Scholar 

  13. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019)

    Article  Google Scholar 

  14. Jacobs, J., et al.: Improved model prediction of glioma growth utilizing tissue-specific boundary effects. Math. Biosci. 312, 59–66 (2019)

    Article  MathSciNet  Google Scholar 

  15. Kickingereder, P., et al.: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20(5), 728–740 (2019)

    Article  Google Scholar 

  16. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  17. Konukoglu, E., et al.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans. Med. Imaging 29(1), 77–95 (2010)

    Article  Google Scholar 

  18. Lipkova, J., et al.: Personalized radiotherapy design for glioblastoma: integrating mathematical tumor models, multimodal scans, and Bayesian inference. IEEE Trans. Med. Imaging 38(8), 1875–1884 (2019)

    Article  MathSciNet  Google Scholar 

  19. Petersen, J., et al.: Deep probabilistic modeling of glioma growth. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 806–814. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_89

    Chapter  Google Scholar 

  20. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report (2009)

    Google Scholar 

  21. Raman, F., Scribner, E., Saut, O., Wenger, C., Colin, T., Fathallah-Shaykh, H.M.: Computational Trials: unraveling motility phenotypes, progression patterns, and treatment options for glioblastoma multiforme. PLoS ONE 11(1), e0146617 (2016)

    Article  Google Scholar 

  22. Silbergeld, D.L., Chicoine, M.R.: Isolation and characterization of human malignant glioma cells from histologically normal brain. J. Neurosurg. 86(3), 525–531 (1997)

    Article  Google Scholar 

  23. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society (project number 11026, GLASS-NL) and the Dutch Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin A. van Garderen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Garderen, K.A. et al. (2022). Evaluating Glioma Growth Predictions as a Forward Ranking Problem. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics