Skip to main content

Deep-learning Based Autoencoder Model for Label Distribution Learning

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2022)

Abstract

Label ambiguity in data is one of the serious challenges in Machine Learning. In such cases, the significance of each label matters. Label Distribution Learning (LDL) is a new way to deal with label ambiguity. In LDL, instances are defined through the degree to which it is represented by its labels or classes. In this paper, deep learning using autoencoders has been proposed for a computing this degree of labels. The autoencoder consists two parts i.e., encoder and decoder. The encoder compresses the input whereas the decoder decompresses it. The idea of compression is to learn relationship between patterns of data which remains unchanged. The idea of decompression is to recover the original input from the compressed input. Since autoencoders are semi-supervised we have appended a fully connected network for computing degree for each labels. Our results show that DLDL shows the least mean-square error among the contemporary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geng, X., Smith-Miles, K., Zhou, Z.-H.: Facial age estimation by learning from label distributions. In: Proceedings of 24th AAAI Conference Artificial Intelligence, Atlanta, GA, pp. 451–456 (2010)

    Google Scholar 

  2. Geng, X., Yin, C., Zhou, Z.-H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  3. Geng, X.: Label distribution learning. IEEE Trans. Knowl. Data Eng. 28(7), 1734–1748 (2016)

    Article  Google Scholar 

  4. Biswas, M., Kuppili, V., Edla, D.: ALDL: a novel method for label distribution learning. Sādhanā 44(3), 53 (2019)

    Article  MathSciNet  Google Scholar 

  5. Kuppili, V., Biswas, M., Reddy, D.: PLDL: a novel method for label distribution learning. Sādhanā 16, 1021–1027 (2019)

    Google Scholar 

  6. Biswas, M., et al.: State-of-the-art review on deep learning in medical imaging. Front. Biosci. (Landmark edition) 24, 392–426 (2019)

    Article  Google Scholar 

  7. Saba, L., et al.: The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019)

    Article  Google Scholar 

  8. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6

    Chapter  Google Scholar 

  9. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  10. Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J., Budynek, J.: The Japanese female facial expression (JAFFE) database. In: Proceedings of Third International Conference on Automatic Face and Gesture Recognition, pp. 14–16 (1998)

    Google Scholar 

  11. Biswas, M., et al.: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput. Methods Prog. Biomed. 155, 165–177 (2018)

    Article  Google Scholar 

  12. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  13. Hou, P., Geng, X., Huo, Z. W., Lv, J.Q.: In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  14. Taud, H., Mas, J.F.: Geomatic approaches for modeling land change scenarios, pp. 451–455 (2018)

    Google Scholar 

  15. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700

    Chapter  Google Scholar 

  16. Goudreau, M.W., Giles, C.L., Chakradhar, S.T., Chen, D.: First-order versus second-order single-layer recurrent neural networks. IEEE Trans. Neural Netw. 5, 511–513 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswas, M., Suri, J.S. (2022). Deep-learning Based Autoencoder Model for Label Distribution Learning. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10766-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10765-8

  • Online ISBN: 978-3-031-10766-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics