Skip to main content

Oral Dental Diagnosis Using Deep Learning Techniques: A Review

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13413))

Included in the following conference series:

  • 2445 Accesses

Abstract

The purpose of this study is to investigate the gradual incorporation of deep learning in the dental healthcare system, offering an easy and efficient diagnosis. For that, an electronic search was conducted in the Institute of Electrical and Electronics Engineers (IEEE) Xplore, ScienceDirect, Journal of Dentistry, Health Informatics Journal, and other credible resources. The studies varied with their tools and techniques used for the diagnosis while coping with the rapid deep-learning evolving base, with different types of conducting tools and analysis for the data. An inclusion criterion was set to specify the quality of the chosen papers. The papers included provided information about the neural network models used like model type, the targeted disease, and results evaluating parameters. The referenced databases ranged from 88 to 12600 clinical images. All the included studies used different neural network models with different outcome metrics. This inconsistency of the methods used makes them incomparable which makes reaching a reliable conclusion more complicated. The paper voiced some observations about the methods used with future recommendations. The goal is to review the deep learning methods that can be used in medical diagnosis.

Nile University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, W.J., Park, J.-B.: History and application of artificial neural networks in dentistry. Eur. J. Dent. 12(04), 594–601 (2018)

    Google Scholar 

  2. El Tantawi, M., Aly, N.M., Attia, D., Abdelrahman, H., Mehaina, M.: Dentist availability in Egypt: a 20-year study of supply, potential demand and economic factors. Eastern Mediterr. Health J. 26(9), 1078–1086 (2020)

    Google Scholar 

  3. Kim, D., Choi, J., Ahn, S., Park, E.: A smart home dental care system: integration of deep learning, image sensors, and mobile controller. J. Ambient Intell. Humanized Comput. 1–9 (2021). https://doi.org/10.1007/s12652-021-03366-8

  4. Kohara, E.K., Abdala, C.G., Novaes, T.F., Braga, M.M., Haddad, A.E., Mendes, F.M.: Is it feasible to use smartphone images to perform telediagnosis of different stages of occlusal caries lesions? PLoS ONE 13(9), e0202116 (2018)

    Google Scholar 

  5. Quintero-Rojas, J., González, J.D.: Use of convolutional neural networks in smartphones for the identification of oral diseases using a small dataset. Revista Facultad de Ingenierí 30(55), e11846 (2021)

    Google Scholar 

  6. Lin, H., Chen, H., Weng, L., Shao, J., Lin, J.: Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. J. Biomed. Opt. 26(8), 086007 (2021)

    Google Scholar 

  7. Duong, D.L., Kabir, M.H., Kuo, R.F.: Automated caries detection with smartphone color photography using machine learning. Health Inform. J. 27(2) (2021)

    Google Scholar 

  8. Zhang, X., et al.: Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis. 28(1), 173–181 (2020)

    MathSciNet  Google Scholar 

  9. Liang, Y., et al.: Proceedings of the 2020 CHI Conference on Human Factors in Computing System. Association for Computing Machinery, New York (2020)

    Google Scholar 

  10. Lee, J.-H., Kim, D.-H., Jeong, S.-N., Choi, S.-H.: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 77, 106–111 (2018)

    Google Scholar 

  11. Krois, J., et al.: Deep learning for the radiographic detection of periodontal bone loss. Sci. Rep. 9(1), 1–6 (2019)

    Google Scholar 

  12. Cantu, A.G., et al.: Detecting caries lesions of different radiographic extension on bitewings using deep learning. J. Dent. 100, 103–425 (2020)

    Google Scholar 

  13. Jeyaraj, P.R., Samuel Nadar, E.R.: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J. Cancer Res. Clin. Oncol. 145(4), 829–837 (2019). https://doi.org/10.1007/s00432-018-02834-7

    Google Scholar 

  14. Liu, L., Xu, J., Huan, Y., Zou, Z., Yeh, S.-C., Zheng, L.-R.: A smart dental health-IoT platform based on intelligent hardware, deep learning, and mobile terminal. IEEE J. Biomed. Health Inform. 24(3), 1–7 (2021)

    Google Scholar 

  15. Takahashi, T., Nozaki, K., Gonda, T., Mameno, T., Ikebe, K.: Deep learning-based detection of dental prostheses and restorations. Sci. Rep. 11(1), 99–110 (2016)

    Google Scholar 

  16. Lee, S., Oh, S., Jo, J., Kang, S., Shin, Y., Park, J.: Deep learning for early dental caries detection in bitewing radiographs. Sci. Rep. 11(1), 1–8 (2021)

    Google Scholar 

  17. You, W., Hao, A., Li, S., Wang, Y., Xia, B.: Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health 20, 1–7 (2020). https://doi.org/10.1186/s12903-020-01114-6

    Google Scholar 

  18. Kim, J., Lee, H.-S., Song, I.-S., Jung, K.-H.: DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 9(1), 1–9 (2019)

    Google Scholar 

  19. Murata, M., et al.: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 35(3), 301–307 (2019). https://doi.org/10.1007/s11282-018-0363-7

    Google Scholar 

  20. Srivastava, M.M., Kumar, P., Pradhan, L., Varadarajan, S.: Detection of tooth caries in bitewing radiographs using deep learning. arXiv preprint arXiv:1711.07312 (2017)

  21. Godlevsky, L., et al.: Application of mobile photography with smartphone cameras for monitoring of early caries appearance in the course of orthodontic correction with dental brackets. Appl. Med. Inform. 33(4), 21–26 (2013)

    Google Scholar 

  22. Ezhov, M., et al.: Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci. Rep. 11(1), 1–16 (2021)

    MathSciNet  Google Scholar 

  23. Casalegno, F., et al.: Caries detection with near-infrared transillumination using deep learning. J. Dent. Res. 98(11), 1227–1233 (2019)

    Google Scholar 

  24. Yang, H., et al.: Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J. Clin. Med. 9(6), 18–39 (2020)

    Google Scholar 

  25. Al Kheraif, A.A., Wahba, A.A., Fouad, H.: Detection of dental diseases from radiographic 2D dental image using hybrid graph-cut technique and convolutional neural network. Measurement 146, 333–342 (2019)

    Google Scholar 

  26. Lian, L., Zhu, T., Zhu, F., Zhu, H.: Deep learning for caries detection and classification. Diagnostics 11(9), 1672 (2021)

    Google Scholar 

  27. Ghaedi, L., et al.: An automated dental caries detection and scoring system for optical images of tooth occlusal surface. Journal 2(5), 99–110 (2016)

    Google Scholar 

  28. Berdouses, E.D., Koutsouri, G.D., Tripoliti, E.E., Matsopoulos, G.K., Oulis, C.J., Fotiadis, D.I.: A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Comput. Biol. Med. 62, 119–135 (2015)

    Google Scholar 

  29. Askar, H., et al.: Detecting white spot lesions on dental photography using deep learning: a pilot study. J. Dent. 107, 103615 (2021)

    Google Scholar 

  30. Yang, J., Xie, Y., Liu, L., Xia, B., Cao, Z., Guo, C.: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 492–497. IEEE (2018)

    Google Scholar 

  31. Chen, Y., Argentinis, J.D.E., Weber, G.: IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 38(4), 688–701 (2016)

    Google Scholar 

  32. Alenezi, N.S.A.L.K.: A method of skin disease detection using image processing and machine learning. Procedia Comput. Sci. 163, 85–92 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Selim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elsayed, A., Mostafa, H., Tarek, R., Mohamed, K., Hossam, A., Selim, S. (2022). Oral Dental Diagnosis Using Deep Learning Techniques: A Review. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics