Skip to main content

Diabetes and Sympathetic Nervous System

  • Chapter
  • First Online:
Blood Pressure Disorders in Diabetes Mellitus

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 557 Accesses

Abstract

Diabetes mellitus is an epidemic condition with an impressive predictive increase in the next future. Several data suggest that activation of the sympathetic nervous system represents one of the main factors for the sustenance and progression of this pathophysiological condition. Due to the fact that usually diabetes is associated with other pathophysiological conditions, several mechanisms contribute to the hyperadrenergic tone. All these mechanisms are the objective of nonpharmacological and pharmacological approaches not only for a better control of hyperglycemic levels but also to reduce the hyperadrenergic tone and the cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    PubMed  Google Scholar 

  2. Guariguata L, Whiting D, Weil C, Unwin N. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011;94:322–32.

    PubMed  Google Scholar 

  3. Da Rocha FJ, Ogurtsova K, Linnekamp U, Guariguata L, Seuring T, Zhang P, et al. IDF diabetes atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016;117:48–54.

    Google Scholar 

  4. Ogurtsova K, da Rocha FJ, Huang Y, Linnekamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Prac. 2017;128:40–50.

    Google Scholar 

  5. World Health Organization. Global report on diabetes. Geneva, Switzerland; 2016.

    Google Scholar 

  6. Entmacher PS, Marks HH. Diabetes in 1964; a world survey. Diabetes. 1965;14:212–23.

    CAS  PubMed  Google Scholar 

  7. International Diabetes Federation. IDF Diabetes Atlas. 1st ed. Brussels, Belgium: International Diabetes Federation; 2000.

    Google Scholar 

  8. International Diabetes Federation. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2013.

    Google Scholar 

  9. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels, Belgium: International Diabetes Federation; 2019.

    Google Scholar 

  10. Degli Esposti L, Saragoni S, Buda S, Sturani A, Degli EE. Glycemic control and diabetes-related health care costs in type 2 diabetes; retrospective analysis based on clinical and administrative databases. Clin Outcomes Res CEOR. 2013;5:193–201.

    Google Scholar 

  11. Diabetes UK. The cost of diabetes. London, United Kingdom: Diabetes UK; 2014.

    Google Scholar 

  12. Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and European Association for the Study on Diabetes (EASD). Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. Eur Heart J. 2007;28:88–136.

    Google Scholar 

  13. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EAM, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. Circulation. 2009;119:351–7.

    PubMed  Google Scholar 

  14. American Diabetes Association. Standards of medical care in diabetes--2011. Diabetes Care. 2011;34(Suppl 1):S11–61.

    Google Scholar 

  15. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. J Hypertens. 2018;36:1953–2041.

    CAS  PubMed  Google Scholar 

  16. McCormack T, Boffa RJ, Jones NR, Carville S, McManus RJ. The 2018 ESC/ESH hypertension guidelines and the 2019 NICE hypertension guideline, how and why they differ. Eur Heart J. 2019;40:3456–8.

    PubMed  Google Scholar 

  17. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389:2239–51.

    CAS  PubMed  Google Scholar 

  18. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60.

    CAS  PubMed  Google Scholar 

  19. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.

    PubMed  Google Scholar 

  20. Zheng Y, Ley SH, Hu FB. Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98.

    PubMed  Google Scholar 

  21. Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, et al. Beta cells failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care. 2014;37:1751–8.

    PubMed  PubMed Central  Google Scholar 

  22. Christensen AA, Gannon M. The beta cell in type 2 diabetes. Curr Diabetes Rep. 2019;19:81.

    Google Scholar 

  23. Yamamoto WR, Bone RN, Sohn P, Syed F, Reissaus CA, Mosley AL, et al. Endoplasmatic reticulum stress alters ryanodine receptor function in the murine pancreatic beta cell. J Biol Chem. 2019;294:168–81.

    Google Scholar 

  24. Bertacca A, Ciccarone A, Cecchetti P, Vianello B, Laurenza I, Maffei M, et al. Continually high insulin levels impair Akt phosphorylation and glucose transport in human bioblasts. Metabolism. 2005;54:1687–93.

    CAS  PubMed  Google Scholar 

  25. Catalano KJ, Maddux BA, Szary J, Youngren JF, Goldfine ID, Schaufele F. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLoS One. 2014;9:e108693.

    PubMed  PubMed Central  Google Scholar 

  26. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA. 2009;106:17787–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64:673–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Braccini L, Ciraolo L, Campa CC, Perino A, Dl L, Tibolla G, et al. PI3K-C2y is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400.

    Google Scholar 

  29. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.

    Google Scholar 

  30. Boden G, Cheung P, Kresge K, Homko C, Powers B, Ferrer L. Insulin resistance is associated with diminished endoplasmic reticulum stress responses in adipose tissue of healthy and diabetic subjects. Diabetes. 2014;63:2977–83.

    PubMed  PubMed Central  Google Scholar 

  31. Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60:625–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bucris E, Beck A, Boura-Halfon S, Isaac R, Vinik Y, Rosenzweig T, et al. Prolonged insulin treatment sensitizes apoptosis pathways in pancreatic beta cells. J Endocrinol. 2016;230:291–307.

    CAS  PubMed  Google Scholar 

  33. Corkey BE. Banting lecture 2011. Hyperinsulinemia: cause or consequence. Diabetes. 2012(61):4–13.

    Google Scholar 

  34. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23:804–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reed MA, Pories WJ, Chapman W, Pender J, Bowden R, Bakarat H, et al. Roux-en-Y gastric bypass corrects hyperinsulinemia implications for the remission of type 2 diabetes. J Clin Endocrinol Metab. 2011;96:2525–31.

    CAS  PubMed  Google Scholar 

  36. Seravalle G, Colombo M, Perego P, Giardini V, Volpe M, Dell’Oro R, et al. Long-term sympathoinhibitory effects of surgically induced weight loss in severe obese patients. Hypertension. 2014;64:431–7.

    CAS  PubMed  Google Scholar 

  37. Purnell JQ, Johnson GS, Wahed AS, Dalla MC, Piccinini F, Cobelli C, et al. Prospective evaluation of insulin and incretin dynamics in obese adults with and without diabetes for 2 years after Roux-en-Y gastric bypass. Diabetologia. 2018;61:1142–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: an early indicator of metabolic dysfunction. J Endocr Soc. 2019;3:1727–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Aasen G, Fagertun H, Halse J. Effect of loss of regional fat assessed by DXA on insulin resistance and dyslipidemia in obese men. Scand J Clin Lab Invest. 2010;70:547–53.

    CAS  PubMed  Google Scholar 

  40. Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, Cavagnini F, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation. 1998;97:2037–42.

    CAS  PubMed  Google Scholar 

  41. Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996;335:1357–62.

    CAS  PubMed  Google Scholar 

  42. Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci USA. 2011;108:13705–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Karauti MA, Freitas-Dias R, Ferreira SM, Vettorazzi JF, Nardelli TR, Araujo HN, et al. Acute exercise improves insulin clearance and increases the expression of insulin-degrading enzyme in the liver and skeletal muscle of Swiss mice. PLoS One. 2016;11:e0160239.

    Google Scholar 

  44. Greenwood RH, Mahler RF, Hales CN. Improvement in insulin secretion in diabetes after diazoxide. Lancet. 1976;1:444–7.

    CAS  PubMed  Google Scholar 

  45. Alemzadeh R, Langley G, Upchurch L, Smith P, Slonim AE. Beneficial effect of diazoxide in obese hyperinsulinemic adults. J Clin Endocrinol Metab. 1998;83:1911–5.

    CAS  PubMed  Google Scholar 

  46. American Diabetes Association. Pharmacologic approaches to glycemic treatment. Diabetes Care. 2017;40(Suppl 1):S64–74.

    Google Scholar 

  47. Bastin M, Andreelli F. Dual GIP-GLP1R agonists in the treatment of type 2 diabetes: a short review on emerging data and therapeutic potential. Diabetes Metab Syndr Obesity Targets Ther. 2019;12:1973–85.

    CAS  Google Scholar 

  48. O’Dea K, Esler M, Leonard P, Stockigt JR, Nestel P. Noradrenaline turnover during undereating and overeating in normal weight subjects. Metabolism. 1982;896-99

    Google Scholar 

  49. Welle S, Lilavivathana U, Campbell RG. Increased plasma norepinephrine concentrations and metabolic rates following glucose ingestion in man. Metabolism. 1980;29:806–9.

    CAS  PubMed  Google Scholar 

  50. Berne C, Fagius J, Niklasson F. Sympathetic response to oral carbohydrate administration: evidence from microelectrode nerve recordings. J Clin Invest. 1989;84:1403–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981;30:219–25.

    Google Scholar 

  52. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991;87:2246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bazelmans J, Nestel PJ, O’Dea K, Esler MD. Blunted norepinephrine responsiveness to changing energy states in obese subjects. Metabolism. 1985;34:154–60.

    CAS  PubMed  Google Scholar 

  54. Astrup A, Andersen T, Christensen NJ, Bulow J, Madsen J, Breum L, et al. Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans. J Clin Nutr. 1990;51:331–7.

    CAS  Google Scholar 

  55. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man: a novel mechanism for insulin resistance. J Clin Invest. 1991;87:2246–52.

    Google Scholar 

  56. Landsberg L. Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. Q J Med. 1986;236:1081–90.

    Google Scholar 

  57. Ravussin E, Swinbum BA. Energy metabolism. In: Stunkard AJ, Wadden TA, editors. Obesity: theory and therapy. 2nd ed. Raven: New York; 1993. p. 97–123.

    Google Scholar 

  58. Landsberg L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). J Hypertens. 2001;19:523–8.

    CAS  PubMed  Google Scholar 

  59. Sartori C, Scherrer U. Insulin, nitric oxide and the sympathetic nervous system: at the crossroads of metabolic and cardiovascular regulation. J Hypertens. 1999;17:1517–25.

    CAS  PubMed  Google Scholar 

  60. Grassi G, Seravalle G, Dell’Oro R, Turri C, Pasqualinotto L, Colombo M, et al. Participation of the hypothalamus-hypophysis axis in the sympathetic activation of human obesity. Hypertension. 2001;38:1316–20.

    CAS  PubMed  Google Scholar 

  61. Mark AL, Anderson EA. Genetic factors determine the blood pressure response to insulin resistance and hyperinsulinemia: a call to refocus the insulin hypothesis of hypertension. Proc Soc Exp Biol Med. 1995;208:330–6.

    CAS  PubMed  Google Scholar 

  62. Hausberg M, Hoffman RP, Somers VK, Sinkey CA, Mark AL, Anderson EA. Contrasting autonomic and hemodynamic effects of insulin in healthy versus young subjects. Hypertension. 1997;29:700–5.

    CAS  PubMed  Google Scholar 

  63. Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti Trevano F, Dell’Oro R, et al. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33:1411–7.

    Google Scholar 

  64. Grassi G, Quarti Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial stages of chronic renal failure. Hypertension. 2011;57:846–51.

    CAS  PubMed  Google Scholar 

  65. Dell’Oro R, Quarti Trevano F, Gamba P, Ciuffarella C, Seravalle G, Mancia G, et al. Sympathetic and baroreflex abnormalities in the uncomplicated prediabetic state. J Hypertens. 2018;36:1195–200.

    PubMed  Google Scholar 

  66. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994;93:2438–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Florian JP, Pawelczyk JA. Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin Sci. 2009;118:61–9.

    Google Scholar 

  68. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DASG. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108:3097–101.

    Google Scholar 

  69. Curry TB, Hines CN, Barnes JN, Somaraju M, Basu R, Miles JM, et al. Relationship of muscle sympathetic nerve activity to insulin sensitivity. Clin Auton Res. 2014;24:77–85.

    PubMed  PubMed Central  Google Scholar 

  70. Grassi G, Biffi A, Seravalle G, Quarti Trevano F, Dell’oro R, Corrao G, et al. Sympathetic neural overdrive in the obese and overweight state: meta-analysis of published studies. Hypertension. 2019;74:349–58.

    CAS  PubMed  Google Scholar 

  71. Lambert GW, Straznicky NE, Lambert EA, Dixon JB, Schlaich MP. Sympathetic nervous activation in obesity and metabolic syndrome – causes, consequences and therapeutic implications. Pharmacol Ther. 2010;126:159–72.

    CAS  PubMed  Google Scholar 

  72. Grassi G, Dell’Oro R, Quarti Trevano F, Scopelliti F, Seravalle G, Paleari F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia. 2005;48:1359–65.

    Google Scholar 

  73. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583.

    PubMed  PubMed Central  Google Scholar 

  74. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens. 2001;14:304S–9.

    CAS  PubMed  Google Scholar 

  75. Sharma AM, Engeli S, Pischon T. New developments in mechanisms of obesity-induced hypertension. Curr Hypertens Rep. 2001;3:152–6.

    CAS  PubMed  Google Scholar 

  76. Festa A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102:42–7.

    CAS  PubMed  Google Scholar 

  77. Christensen NJ. Catecholamines and diabetes mellitus. Diabetologia. 1979;16:211–24.

    CAS  PubMed  Google Scholar 

  78. Frattola A, Parati A, Gamba P, Paleari F, Mauri G, Di Rienzo M, et al. Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia. 1997;40:1470–5.

    CAS  PubMed  Google Scholar 

  79. Sucharita S, Bantwal G, Idiculla J, Ayyar V, Vaz M. Autonomic nervous system function in type 2 diabetes using conventional clinical autonomic tests, heart rate and blood pressure variability measures. Indian J Endocrinol Metab. 2011;15:198–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ziegler D, Strom A, Bonhof G, Puttgen S, Bodis M, Buckart V, et al. GDS Group. Differential associations of lower cardiac vagal tone with insulin resistance and insulin secretion in recently diagnosed type 1 and type 2 diabetes. Metabolism. 2018;79:1–9.

    CAS  PubMed  Google Scholar 

  81. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57.

    CAS  PubMed  Google Scholar 

  82. Miki K, Yoshomoto M. Sympathetic nerve activity during sleep, exercise, and mental stress. Auton Neurosci. 2013;174:15–20.

    PubMed  Google Scholar 

  83. Yeboah J, Bertoni AG, Herrington DM, Post WS, Burke GL. Impaired fasting glucose and the risk of incident diabetes mellitus and cardiovascular events in an adult population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2011;58:140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Anand SS, Dagenais GR, Mohan V, Diaz R, Probsfield J, Freeman R, et al. Glucose levels are associated with cardiovascular disease and death in an international cohort of normal glycaemic and dysglycaemic men and women: the EpiDREAM cohort study. Eur J Prev Cardiol. 2012;19:755–64.

    CAS  PubMed  Google Scholar 

  85. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all-cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953.

    PubMed  PubMed Central  Google Scholar 

  86. Straznicky NE, Grima AT, Sari CI, Eikelis N, Lambert EA, Nestel PJ, et al. Neuroadrenergic dysfunction along the diabetes continuum: a comparative study in obese metabolic syndrome subjects. Diabetes. 2012;61:2506–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Grassi G, Biffi A, Dell’Oro R, Quarti Trevano F, Seravalle G, Corrao G, et al. Sympathetic neural abnormalities in type 1 and type 2 diabetes: a systematic review and meta-analysis. J Hypertens. 2020;38:1436–42.

    CAS  PubMed  Google Scholar 

  88. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brand DO. Reflex sympathetic activation induces insulin resistance in the human forearm. Hypertension. 1993;21:618–23.

    CAS  PubMed  Google Scholar 

  89. Scherrer U, Sartori C. Insulin is a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation. 1997;96:4104–13.

    CAS  PubMed  Google Scholar 

  90. Wu JS, Lu FH, Yang YC, Chang SH, Huang YH, Jason Chen JJ, et al. Impaired baroreflex sensitivity in subjects with impaired glucose tolerance, but not isolated impaired fasting glucose. Acta Diabetol. 2014;51:535–41.

    CAS  PubMed  Google Scholar 

  91. Zimmerman BG, Sybertz EJ, Wong PC. Interactions between sympathetic and renin-angiotensin system. J Hypertens. 1984;2:581–7.

    CAS  PubMed  Google Scholar 

  92. Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and cardiorenal action of leptin. Hypertension. 1997;30:619–23.

    CAS  PubMed  Google Scholar 

  93. Lambert E, Lambert G, Ika-Sari C, Dawood T, Lee K, Chopra R, et al. Ghrelin modulates sympathetic nervous system and stress response in lean and overweight men. Hypertension. 2011;58:43–50.

    CAS  PubMed  Google Scholar 

  94. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75:33–59.

    CAS  PubMed  Google Scholar 

  95. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22528 patients. J Am Heart Assoc. 2017;6:e004007.

    Google Scholar 

  96. Baker WL, Buckley LF, Kelly MS, Bucheit JD, Pard ED, Brown R, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e005686.

    PubMed  PubMed Central  Google Scholar 

  97. Sheen AJ, Delanaye P. Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Metab. 2017;43:99–109.

    Google Scholar 

  98. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canaglifozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    CAS  PubMed  Google Scholar 

  99. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9.

    CAS  PubMed  Google Scholar 

  100. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–29.

    PubMed  Google Scholar 

  101. Matthews VB, Elliot RH, Rudnicka C, Hricova J, Heart L, Schlaich MP. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35:2059–68.

    CAS  PubMed  Google Scholar 

  102. Briasoulis A, Al Dhaybi O, Bakris GL. SGLT2 inhibitors and mechanisms of hypertension. Curr Cardiol Rep. 2018;20:1.

    PubMed  Google Scholar 

  103. Jordan J, Tank J, Heusser K, Heise T, Wanner C, Heer M, et al. The effect of empaglifozin on muscle sympathetic nerve activity in patients with type 2 diabetes mellitus. J Am Soc Hypertens. 2017;11:604–12.

    CAS  PubMed  Google Scholar 

  104. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71:471–6.

    PubMed  Google Scholar 

  105. Kiuchi S, Hisatake S, Kabuki T, Fujii T, Oka T, Dobashi S, et al. Long-term use of ipraglifozin improved cardiac sympathetic nerve activity in a patient with heart failure: a case report. Drug Discover Ther. 2018;12:51–4.

    Google Scholar 

  106. Verma S. Are the cardiorenal benefits of SGLT2 inhibitors due to inhibition of the sympathetic nervous system? JACC Basic Transl Sci. 2020;5:180–2.

    PubMed  PubMed Central  Google Scholar 

  107. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nature Rev Cardiol. 2020;17:2108–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seravalle, G., Grassi, G. (2023). Diabetes and Sympathetic Nervous System. In: Berbari, A.E., Mancia, G. (eds) Blood Pressure Disorders in Diabetes Mellitus. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-13009-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13009-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13008-3

  • Online ISBN: 978-3-031-13009-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics