Skip to main content

Abstract

Design rule checking (DRC) clean is a fundamental chip manufacturing requirement. However, achieving this is increasingly challenging with the advance of semiconductor technology nodes and the increase of complicated design rules. To effectively mitigate DRC violations, early routability predictions are adopted in chip design flows for designers or tools to prevent violations in a proactive manner. In recent years, machine learning, especially deep learning (DL)-based routability estimators, have demonstrated their great potential in providing fast yet accurate predictions in early design stages. This chapter introduces representative and state-of-the-art DL-based methods for routability prediction in detail. After presenting the background on routability and relevant DL techniques, we emphasize the importance of global information and model receptive field, which motivates the adoption of DL models for routability predictions. After that, methodologies about data generation, feature engineering, model architecture design, and model construction are introduced. Finally, we cover existing explorations in the deployment of routability estimators and then summarize and share our point of view on the future of DL for routability prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alawieh, M.B., Li, W., Lin, Y., Singhal, L., Iyer, M.A., Pan, D.Z.: High-definition routing congestion prediction for large-scale FPGAs. In: Asia and South Pacific Design Automation Conference (ASP-DAC) (2020)

    Google Scholar 

  2. Araujo, A., Norris, W., Sim, J.: Computing receptive fields of convolutional neural networks. Distill (2019) doi: 10.23915/distill.00021, https://distill.pub/2019/computing-receptive-fields

  3. Bustany, I.S., Chinnery, D., Shinnerl, J.R., Yutsis, V.: ISPD 2015 benchmarks with fence regions and routing blockages for detailed-routing-driven placement. In: International Symposium on Physical Design (ISPD) (2015)

    Google Scholar 

  4. Chan, W.T.J., Du, Y., Kahng, A.B., Nath, S., Samadi, K.: BEOL stack-aware routability prediction from placement using data mining techniques. In: International Conference on Computer Design (ICCD) (2016)

    Google Scholar 

  5. Chan, W.T.J., Ho, P.H., Kahng, A.B., Saxena, P.: Routability optimization for industrial designs at sub-14nm process nodes using machine learning. In: International Symposium on Physical Design (ISPD) (2017)

    Google Scholar 

  6. Chang, C.C., Pan, J., Zhang, T., Xie, Z., Hu, J., Qi, W., Lin, C.W., Liang, R., Mitra, J., Fallon, E., Chen, Y.: Automatic routability predictor development using neural architecture search. In: International Conference on Computer-Aided Design (ICCAD) (2021)

    Google Scholar 

  7. Chen, J., Kuang, J., Zhao, G., Huang, D.J.H., Young, E.F.: PROS: A plug-in for routability optimization applied in the state-of-the-art commercial EDA tool using deep learning. In: International Conference On Computer Aided Design (ICCAD) (2020)

    Google Scholar 

  8. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017). Preprint. arXiv:1706.05587

    Google Scholar 

  9. Ding, Y., Chu, C., Mak, W.K.: Pin accessibility-driven detailed placement refinement. In: International Symposium on Physical Design (ISPD) (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Huang, Y.H., Xie, Z., Fang, G.Q., Yu, T.C., Ren, H., Fang, S.Y., Chen, Y., Hu, J.: Routability-driven macro placement with embedded cnn-based prediction model. In: Design, Automation & Test in Europe Conference & Exhibition (DATE) (2019)

    Google Scholar 

  12. Hung, W.T., Huang, J.Y., Chou, Y.C., Tsai, C.H., Chao, M.: Transforming global routing report into DRC violation map with convolutional neural network. In: International Symposium on Physical Design (ISPD) (2020)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). Preprint. arXiv:1412.6980

    Google Scholar 

  14. Kirby, R., Godil, S., Roy, R., Catanzaro, B.: CongestionNet: routing congestion prediction using deep graph neural networks. In: International Conference on Very Large Scale Integration (VLSI-SoC) (2019)

    Google Scholar 

  15. Liang, R., Xiang, H., Pandey, D., Reddy, L., Ramji, S., Nam, G.J., Hu, J.: DRC hotspot prediction at sub-10nm process nodes using customized convolutional network. In: International Symposium on Physical Design (ISPD) (2020)

    Google Scholar 

  16. Liu, S., Sun, Q., Liao, P., Lin, Y., Yu, B.: Global placement with deep learning-enabled explicit routability optimization. In: Design, Automation & Test in Europe Conference & Exhibition (DATE) (2021)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  18. Maarouff, D., Shamli, A., Martin, T., Grewal, G., Areibi, S.: A deep-learning framework for predicting congestion during FPGA placement. In: International Conference on Field-Programmable Logic and Applications (FPL) (2020)

    Google Scholar 

  19. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). Preprint. arXiv:1411.1784

    Google Scholar 

  20. Pan, J., Chang, C.C., Xie, Z., Li, A., Tang, M., Zhang, T., Hu, J., Chen, Y.: Towards collaborative intelligence: routability estimation based on decentralized private data. In: Design Automation Conference (DAC) (2022)

    Google Scholar 

  21. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  22. Qu, T., Lin, Y., Lu, Z., Su, Y., Wei, Y.: Asynchronous reinforcement learning framework for net order exploration in detailed routing. In: Design, Automation & Test in Europe Conference & Exhibition (DATE) (2021)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2015)

    Google Scholar 

  24. Spindler, P., Johannes, F.M.: Fast and accurate routing demand estimation for efficient routability-driven placement. In: Design, Automation & Test in Europe Conference & Exhibition (DATE) (2007)

    Google Scholar 

  25. Tabrizi, A.F., Rakai, L., Darav, N.K., Bustany, I., Behjat, L., Xu, S., Kennings, A.: A machine learning framework to identify detailed routing short violations from a placed netlist. In: Design Automation Conference (DAC) (2018)

    Google Scholar 

  26. Tabrizi, A.F., Darav, N.K., Rakai, L., Bustany, I., Kennings, A., Behjat, L.: Eh? predictor: a deep learning framework to identify detailed routing short violations from a placed netlist. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) (2019)

    Google Scholar 

  27. Xie, Z., Huang, Y.H., Fang, G.Q., Ren, H., Fang, S.Y., Chen, Y., Hu, J.: RouteNet: routability prediction for mixed-size designs using convolutional neural network. In: International Conference on Computer-Aided Design (ICCAD) (2018)

    Google Scholar 

  28. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). Preprint. arXiv:1511.07122

    Google Scholar 

  29. Yu, C., Zhang, Z.: Painting on placement: Forecasting routing congestion using conditional generative adversarial nets. In: Design Automation Conference (DAC) (2019)

    Google Scholar 

  30. Yu, T.C., Fang, S.Y., Chiu, H.S., Hu, K.S., Tai, P.H.Y., Shen, C.C.F., Sheng, H.: Pin accessibility prediction and optimization with deep learning-based pin pattern recognition. In: Design Automation Conference (DAC) (2019)

    Google Scholar 

  31. Zhou, Q., Wang, X., Qi, Z., Chen, Z., Zhou, Q., Cai, Y.: An accurate detailed routing routability prediction model in placement. In: Asia Symposium on Quality Electronic Design (ASQED) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyao Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, Z., Pan, J., Chang, CC., Liang, R., Barboza, E.C., Chen, Y. (2022). Deep Learning for Routability. In: Ren, H., Hu, J. (eds) Machine Learning Applications in Electronic Design Automation. Springer, Cham. https://doi.org/10.1007/978-3-031-13074-8_2

Download citation

Publish with us

Policies and ethics