Skip to main content

Inverse Sparse Object Tracking via Adaptive Representation

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13395))

Included in the following conference series:

  • 1648 Accesses

Abstract

Sparse representation has been widely applied in object tracking, which is challenging due to various factors, such as occlusion, illumination variation, and background clutter. In this paper, we propose an inverse sparse tracking algorithm based on adaptive representation. Unlike the conventional tracking methods, we explore the low-rank property from the group structure of the candidate particles and calculate their similarity between foreground and background, which makes our representations more discriminative and robust. Specifically, we employed the candidate particles as the dictionary atoms to sparse encode the templates, which makes less cost on optimization. The adaptive regularization based on the rank of each group of candidate sub-matrix is employed in our method to adapt to appearance changes. Moreover, foreground templates and background templates are collected as positive and negative dictionaries, respectively, to make the tracker more discriminate from the complex environment. The experiment is conducted on a public dataset OTB100, and the quantitative results are reported, which demonstrate the favorable performance of the proposed method over some state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross, D., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. IJCV 77(1), 125–141 (2008)

    Article  Google Scholar 

  2. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  3. Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR (2012)

    Google Scholar 

  4. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: CVPR (2012)

    Google Scholar 

  5. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  6. Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity-based collaborative model. In: CVPR (2012)

    Google Scholar 

  7. Li, H., Shen, C., Shi, Q.: Real-time visual tracking with compressed sensing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1305–1312 (2011)

    Google Scholar 

  8. Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient l1 tracker with occlusion detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1257–1264 (2011)

    Google Scholar 

  9. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)

    Article  Google Scholar 

  10. Zhang, T., et al.: Structural sparse tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 150–158 (2015)

    Google Scholar 

  11. Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012, pp. 1822–1829 (2012)

    Google Scholar 

  12. Zhao, Z., et al.: Dual-scale structural local sparse appearance model for robust object tracking. Neurocomputing 237, 101–113 (2017)

    Article  Google Scholar 

  13. Qi, Y., Qin, L., Zhang, J., Zhang, S., Huang, Q., Yang, M.H.: Structure-aware local sparse coding for visual tracking. IEEE Trans. Image Process. 27, 3857–3869 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, B., Shen, J., Liu, Y., Hu, H., Shao, L., Li, X.: Visual tracking using strong classifier and structural local sparse descriptors. IEEE Trans. Multimedia 17(10), 1818–1828 (2015)

    Article  Google Scholar 

  15. Zhang, T., Xu, C., Yang, M.: Robust structural sparse tracking. IEEE Trans. Pattern Anal. Mach. Intell. 41, 473–486 (2018)

    Article  Google Scholar 

  16. Zhou, Y., Han, J., Yuan, X., Wei, Z., Hong, R.: Inverse sparse group lasso model for robust object tracking. IEEE Trans. Multimedia 19(8), 1798–1810 (2017)

    Article  Google Scholar 

  17. Mi, J.-X., Fu, Q., Li, W.: Adaptive class preserving representation for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7427–7435 (2017)

    Google Scholar 

  18. Henriques, J.F., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  19. Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. TPAMI 39, 1561–1575 (2016)

    Article  Google Scholar 

  20. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Chapter  Google Scholar 

  21. Ma, C., Huang, J.-B., Yang, X., Yang, M.-H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)

    Google Scholar 

  22. Zhang, T., Xu, C., Yang, M.H.: Multi-task correlation particle filter for robust object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4819–4827 (2017)

    Google Scholar 

  23. Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: ICCV, pp. 4310–4318 (2015)

    Google Scholar 

  24. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  25. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  27. Li, B., Yan, J.J., Wu, W., Zhu, Z., Hu, X.L.: High performance visual tracking with siamese region proposal network. In: CVPR (2018)

    Google Scholar 

  28. Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels. In: ICCV (2011)

    Google Scholar 

  29. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)

    Google Scholar 

  30. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)

    Google Scholar 

  31. Zhuang, B., Lu, H., Xiao, Z., Wang, D.: Visual tracking via discriminative sparse similarity map. IEEE Trans Image Process 23(4), 1872–1881 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xun Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mi, JX., Gao, Y., Li, R. (2022). Inverse Sparse Object Tracking via Adaptive Representation. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics