Skip to main content

An Active Obstacle Avoidance Method

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2667 Accesses

Abstract

Swarm robots often encounter dynamic obstacles when performing tasks, such as moving objects in the scene or other individuals in the robot group. The traditional passive obstacle avoidance method makes the robots take emergency avoidance behaviour when it is about to encounter obstacles. Hoverer this may destroy the group cooperation behaviour, thereby affecting the efficiency of the system. Active obstacle avoidance perceives a dynamic target and predicts the movement of the target and takes the initiative to avoid obstacles, minimizes the impact of obstacle avoidance on the system’s cooperative behaviour. Considering that the defects in the structural design of swarm robots and the avoidance strategy of swarm robots, it is necessary to focus on active obstacle avoidance of swarm robots that is based on the prediction of dynamic targets. An improved obstacle avoidance method is therefore proposed, which enables robots to avoid both static and dynamic obstacles.

This work is supported by the projects of National Natural Science Foundation of China (No. 61873192), the Quick Support Project (No. 61403110321), the Innovative Projects (No. 20-163-00-TS-009-125-01; 21-163-00-TS-011-011-01; 2021-JCJQ-LB-010-11), and the Key Pre-Research Project of the 14th-Five-Year-Plan on Common Technology (No. 50912030501). Meanwhile, this work is also partially supported by the Fundamental Research Funds for the Central Universities, as well as the project of Shanghai Key Laboratory of Spacecraft Mechanism (18DZ2272200). All these supports are highly appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Y., Hu, H., Liu, X.: Obstacles avoidance of artificial potential field method with memory function in complex environment. In: 8th World Congress on Intelligent Control and Automation, Jinan, pp. 6414–6418. IEEE (2010)

    Google Scholar 

  2. Paolo, F., Zvi, S.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  3. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  4. Ulrich, I., Borenstein, J.: VFH+: reliable obstacle avoidance for fast mobile robots. In: IEEE International Conference on Robotics and Automation, Leuven, pp. 1572–1577. IEEE (1998)

    Google Scholar 

  5. Dieter, F., Wolfram, B., Sebastian, T.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  6. Saranrittichai, P., Niparnan, N., Sudsang, A.: Robust local obstacle avoidance for mobile robot based on dynamic window approach. In: 10th IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, pp. 1–4. IEEE (2013)

    Google Scholar 

  7. Zhang, Z., Zhang, P., Mao, H., Li, X., Sun, Q.: Global dynamic path planning combining improved A* algorithm and dynamic window method. Electron. Opt. Control 1–6 (2021)

    Google Scholar 

  8. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, Pasadena, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  9. Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal \(n\)-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19457-3_1

    Chapter  Google Scholar 

  10. Rudof, K.: A new approach to linear filtering and prediction problems. J. Basic Eng. Trans. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Cui, Y., Xu, P., Shen, Y., Tang, Q. (2022). An Active Obstacle Avoidance Method. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics