Skip to main content

Challenges for Applications of the Electrochemical Promotion of Catalysis

  • Chapter
  • First Online:
Recent Advances in Electrochemical Promotion of Catalysis

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 61))

  • 451 Accesses

Abstract

The phenomenon of the electrochemical promotion of catalysis (EPOC) has been exemplified at lab scale in numerous catalytic reactions, on several types of catalysts and solid electrolyte supports, as extensively described in previous chapters of this book. However, contrary to chemical promotion, there has been no commercial application of electrochemical promotion. This chapter discusses potential catalytic and electrocatalytic processes that could be appropriate for a potential EPOC commercial implementation, as well as for further required technological developments. The first part describes already explored promising reactions such as ethylene epoxidation, NOx storage/reduction and H2 production and storage. The second section deals with the innovative concept of EPOC applied to alcohol-assisted water electrolysis. The prospective final part discusses catalytic processes which are still in an early EPOC development stage but could attract increasing interest given their great relevance at industrial level. This is the case, for example, of selective CO2 hydrogenation reactions and propylene epoxidation. We are discussing the state-of-the-art operation conditions for each catalytic process and the pioneering EPOC works which stand for a good starting point for future research efforts.

Part of this chapter is reproduced from Ref. 20 open access under a CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen A (1971) Review of ammonia catalysis. Catal Rev 4:1–26. https://doi.org/10.1080/01614947108075483

    Article  Google Scholar 

  2. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syngas. Catalysis Science and Technology 4:2210–2229. https://doi.org/10.1039/c4cy00327f

    Article  CAS  Google Scholar 

  3. Xu H, Zhu L, Nan Y, Xie Y, Cheng D (2019) Revisit the role of chlorine in selectivity enhancement of ethylene epoxidation. Ind Eng Chem Res 58:21403–21412. https://doi.org/10.1021/acs.iecr.9b04993

    Article  CAS  Google Scholar 

  4. Vayenas CG, Bebelis S, Neophytides S (1988) Non-faradaic electrochemical modification of catalytic activity. J Phys Chem 92:5083–5085. https://doi.org/10.1021/j100329a007

    Article  CAS  Google Scholar 

  5. Vayenas CG (2004) Thermodynamic analysis of the electrochemical promotion of catalysis. Solid State Ionics 168:321–326. https://doi.org/10.1016/j.ssi.2003.04.001

    Google Scholar 

  6. Tsiplakides D, Balomenou S, Katsaounis A, Archonta D, Koutsodontis C, Vayenas CG (2005) Electrochemical promotion of catalysis: mechanistic investigations and monolithic electropromoted reactors. Catal Today 100:133–144. https://doi.org/10.1016/J.CATTOD.2004.12.015

    Article  CAS  Google Scholar 

  7. Lintz H-G, Vayenas CG (1989) Solid ion conductors in heterogeneous catalysis. Angew Chem Int Ed Engl 28:708–715. https://doi.org/10.1002/anie.198907081

    Article  Google Scholar 

  8. Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435. https://doi.org/10.1007/s10008-011-1336-5

    Article  CAS  Google Scholar 

  9. González-Cobos J, de Lucas-Consuegra A (2016) A review of surface analysis techniques for the investigation of the phenomenon of electrochemical promotion of catalysis with alkaline ionic conductors. Catalysts 6:15. https://doi.org/10.3390/catal6010015

  10. de Lucas-Consuegra A (2015) New trends of alkali promotion in heterogeneous catalysis: electrochemical promotion with alkaline ionic conductors. Catal Surv Jpn 19:25–37. https://doi.org/10.1007/s10563-014-9179-6

    Article  CAS  Google Scholar 

  11. Vernoux P (2017) Recent advances in electrochemical promotion of catalysis. In: Catalysis, Volumen 29. The Royal Society of Chemistry, pp. 9-59

    Google Scholar 

  12. Vayenas CG (2013) Promotion, electrochemical promotion and metal-support interactions: their common features. Catal Lett 143:1085–1097. https://doi.org/10.1007/s10562-013-1128-x

    Article  CAS  Google Scholar 

  13. Yentekakis IV, Vernoux P, Goula G, Caravaca A (2019) Electropositive promotion by Alkalis or Alkaline earths of Pt-group metals in emissions control catalysis: a status report. Catalysts 9. https://doi.org/10.3390/catal9020157

  14. Vayenas C, Bebeli S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions. Springer

    Google Scholar 

  15. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde J-L, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260. https://doi.org/10.1021/cr4000336

    Article  CAS  PubMed  Google Scholar 

  16. González-Cobos J, Valverde JL, de Lucas-Consuegra A (2017) Electrochemical vs. chemical promotion in the H2 production catalytic reactions. Int J Hydrog Energy 42:13712–13723. https://doi.org/10.1016/j.ijhydene.2017.03.085

    Article  CAS  Google Scholar 

  17. Anastasijevic NA (2009) NEMCA-from discovery to technology. Catal Today 146:308–311. https://doi.org/10.1016/j.cattod.2009.02.020

    Article  CAS  Google Scholar 

  18. Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146:312–318. https://doi.org/10.1016/j.cattod.2009.05.015

    Article  CAS  Google Scholar 

  19. Tsiplakides D, Balomenou S (2008) Electrochemical promoted catalysis: towards practical utilization. Chem Ind Chem Eng Q 14:97–105. https://doi.org/10.2298/CICEQ0802097T

    Article  CAS  Google Scholar 

  20. Caravaca A, González-Cobos J, Vernoux P (2020) A discussion on the unique features of electrochemical promotion of catalysis (EPOC): are we in the right path towards commercial implementation? Catalysts 10:1276. https://doi.org/10.3390/catal10111276

    Article  CAS  Google Scholar 

  21. TechNavio (2016) Global ethylene oxide and ethylene glycol market 2016–2020. TechNavio, London

    Google Scholar 

  22. Rebsdat S, Mayer D (2001) Ethylene Oxide. Ullmann’s Encyclopedia of Industrial Chemistry

    Book  Google Scholar 

  23. Van Santen RA, Kuipers HPCE (1987) The mechanism of ethylene epoxidation. In: Eley DD, Pines H, Weisz PBBT-A in C (eds). Academic Press, pp. 265–321

    Google Scholar 

  24. Kenge N, Pitale S, Joshi K (2019) The nature of electrophilic oxygen: insights from periodic density functional theory investigations. Surf Sci 679:188–195. https://doi.org/10.1016/j.susc.2018.09.009

    Article  CAS  Google Scholar 

  25. Christopher P, Linic S (2008) Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J Am Chem Soc 130:11264–11265. https://doi.org/10.1021/ja803818k

    Article  CAS  PubMed  Google Scholar 

  26. Campbell CT, Paffett MT (1984) The role of chlorine promoters in catalytic ethylene epoxidation over the ag(110) surface. Applications of Surface Science 19:28–42. https://doi.org/10.1016/0378-5963(84)90051-5

    Article  CAS  Google Scholar 

  27. Van Hoof AJF, Filot IAW, Friedrich H, Hensen EJM (2018) Reversible restructuring of silver particles during ethylene epoxidation. ACS Catal 8:11794–11800. https://doi.org/10.1021/acscatal.8b03331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rocha TCR, Hävecker M, Knop-Gericke A, Schlögl R (2014) Promoters in heterogeneous catalysis: the role of Cl on ethylene epoxidation over Ag. J Catal 312:12–16. https://doi.org/10.1016/j.jcat.2014.01.002

    Article  CAS  Google Scholar 

  29. Özbek MO, van Santen RA (2013) The mechanism of ethylene epoxidation catalysis. Catal Lett 143:131–141. https://doi.org/10.1007/s10562-012-0957-3

    Article  CAS  Google Scholar 

  30. Stoukides M, Vayenas CG (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. J Catal 70:137–146. https://doi.org/10.1016/0021-9517(81)90323-7

    Article  CAS  Google Scholar 

  31. Karavasilis C, Bebelis S, Vayenas CG (1995) Selectivity maximization of ethylene epoxidation via NEMCA with zirconia and β″-Al2O3 solid electrolytes. Ionics 1:85–91. https://doi.org/10.1007/BF02426013

    Article  CAS  Google Scholar 

  32. Karavasilis C, Bebelis S, Vayenas CG (1996) Non-faradaic electrochemical modification of catalytic activity: X. ethylene epoxidation on ag deposited on stabilized ZrO2 in the presence of chlorine moderators. J Catal 160:190–204. https://doi.org/10.1006/jcat.1996.0138

    Article  CAS  Google Scholar 

  33. Gilbert B, Cavoue T, Aouine M, Burel L, Aires FJCS, Caravaca A, Rieu M, Viricelle JP, Bruyère S, Horwat D, Migot S, Vilasi P, Vernoux P (2021) Ag-based electrocatalysts for ethylene epoxidation. Electrochim Acta 394:139018. https://doi.org/10.1016/j.electacta.2021.139018

    Article  CAS  Google Scholar 

  34. Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) Electrochemical promotion and metal–support interactions. J Catal 204:23–34. https://doi.org/10.1006/jcat.2001.3360

    Article  CAS  Google Scholar 

  35. Yiokari CG, Pitselis GE, Polydoros DG, Katsaounis AD, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. Chem A Eur J 104:10600–10602. https://doi.org/10.1021/jp002236v

    Article  CAS  Google Scholar 

  36. Miyoshi N, Matsumoto S, Katoh K, Tanaka T, Harada J, Takahashi N, Yokota K, Sugiura M, Kasahara K (1995) Development of new concept three-way catalyst for automotive lean-burn engines. SAE Technical Papers. https://doi.org/10.4271/950809

  37. Matsumoto S (1996) DeNOx catalyst for automotive lean-burn engine. Catal Today 29:43–45. https://doi.org/10.1016/0920-5861(95)00259-6

    Article  CAS  Google Scholar 

  38. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal Today 27:63–69. https://doi.org/10.1016/0920-5861(95)00173-5

    Article  CAS  Google Scholar 

  39. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE II (2004) Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal Rev Sci Eng 46:163–245. https://doi.org/10.1081/CR-200031932

    Article  Google Scholar 

  40. Liu G, Gao P-X (2011) A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies. Catalysis Science and Technology 1:552–568. https://doi.org/10.1039/c1cy00007a

    Article  CAS  Google Scholar 

  41. Kim DH (2014) Sulfation and Desulfation mechanisms on Pt–BaO/Al2O3 NOx storage-reduction (NSR) catalysts. Catal Surv Jpn 18:13–23. https://doi.org/10.1007/s10563-013-9160-9

    Article  CAS  Google Scholar 

  42. Pancharatnam S (1975) Catalytic decomposition of nitric oxide on zirconia by electrolytic removal of oxygen. J Electrochem Soc 122:869. https://doi.org/10.1149/1.2134364

    Article  CAS  Google Scholar 

  43. Bredikhin S, Maeda K, Awano M (2001) NO decomposition by an electrochemical cell with mixed oxide working electrode. Solid State Ionics 144:1–9. https://doi.org/10.1016/S0167-2738(01)00862-1

    Article  CAS  Google Scholar 

  44. Awano M, Bredikhin S, Aronin A, Abrosimova G, Katayama S, Hiramatsu T (2004) NOx decomposition by electrochemical reactor with electrochemically assembled multilayer electrode. Solid State Ionics 175:605–608. https://doi.org/10.1016/J.SSI.2004.01.073

    Article  CAS  Google Scholar 

  45. Hamamoto K, Fujishiro Y, Awano M (2008) Low-temperature NO[sub x] decomposition using an electrochemical reactor. J Electrochem Soc 155:E109. https://doi.org/10.1149/1.2936400

    Article  CAS  Google Scholar 

  46. Hadjar A, Hernández WY, Princivalle A, Tardivat C, Guizard C, Vernoux P (2011) Electrochemical activation of Pt-Ba/YSZ NOxTRAP catalyst under lean-burn conditions. Electrochem Commun 13:924–927. https://doi.org/10.1016/j.elecom.2011.05.034

    Article  CAS  Google Scholar 

  47. Wang X, Westermann A, Shi YX, Cai NS, Rieu M, Viricelle J-P, Vernoux P (2017) Electrochemical removal of NOx on ceria-based catalyst-electrodes. Catalysts 7:61. https://doi.org/10.3390/catal7020061

  48. Shao J, Hansen KK (2013) NO x reduction on Ag electrochemical cells with a K-Pt-Al 2 O 3 adsorption layer. J Electrochem Soc 160:H294–H301. https://doi.org/10.1149/2.041306jes

    Article  CAS  Google Scholar 

  49. de Lucas-Consuegra A, Caravaca Á, Sánchez P, Dorado F, Valverde JL (2008) A new improvement of catalysis by solid-state electrochemistry: An electrochemically assisted NOx storage/reduction catalyst. J Catal 259:54–65. https://doi.org/10.1016/j.jcat.2008.07.008

    Article  CAS  Google Scholar 

  50. de Lucas-Consuegra A, Caravaca A, Martín de Vidales MJ, Dorado F, Balomenou S, Tsiplakides D, Vernoux P, Valverde JL (2009) An electrochemically assisted NOx storage/reduction catalyst operating under fixed lean burn conditions. Catal Commun 11:247–251. https://doi.org/10.1016/j.catcom.2009.10.004

    Article  CAS  Google Scholar 

  51. Marwood M, Vayenas CG (1998) Electrochemical promotion of a dispersed platinum catalyst. J Catal 178:429–440. https://doi.org/10.1006/JCAT.1998.2156

    Article  CAS  Google Scholar 

  52. de Lucas-Consuegra A, Princivalle A, Caravaca A, Dorado F, Marouf A, Guizard C, Valverde JL, Vernoux P (2009) Preparation and characterization of a low particle size Pt/C catalyst electrode for the simultaneous electrochemical promotion of CO and C3H6 oxidation. Appl Catal A Gen 365:274-280. https://doi.org/10.1016/j.apcata.2009.06.026

  53. Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosda S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107:210–220. https://doi.org/10.1016/j.apcatb.2011.07.016

    Article  CAS  Google Scholar 

  54. de Lucas-Consuegra A, González-Cobos J, Carcelén V, Magén C, Endrino JL, Valverde JL (2013) Electrochemical promotion of Pt nanoparticles dispersed on a diamond-like carbon matrix: a novel electrocatalytic system for H2 production. J Catal 307:18–26. https://doi.org/10.1016/j.jcat.2013.06.012

    Article  CAS  Google Scholar 

  55. González-Cobos J, Ruiz-López E, Valverde JL, de Lucas-Consuegra A (2016) Electrochemical promotion of a dispersed Ni catalyst for H2 production via partial oxidation of methanol. Int J Hydrog Energy 41:19418–19429. https://doi.org/10.1016/j.ijhydene.2016.06.027

    Article  CAS  Google Scholar 

  56. González-Cobos J, Rico VJ, González-Elipe AR, Valverde JL, De Lucas-Consuegra A (2015) Electrochemical activation of an oblique angle deposited Cu catalyst film for H2 production. Catal Sci Technol 5:2203–2214. https://doi.org/10.1039/c4cy01524j

    Article  CAS  Google Scholar 

  57. González-Cobos J, Rico VJ, González-Elipe AR, Valverde JL, de Lucas-Consuegra A (2016) Electrocatalytic system for the simultaneous hydrogen production and storage from methanol. ACS Catal 6:1942–1951. https://doi.org/10.1021/acscatal.5b02844

    Article  CAS  Google Scholar 

  58. Christensen H, Dinesen J, Engell HH, Hansen KK (1999) Electrochemical reactor for exhaust gas purification. SAE Technical Papers. https://doi.org/10.4271/1999-01-0472

  59. Christensen H, Dinesen J, Engell HH, Larsen LC, Hansen KK, Skou EM (2000) Electrochemical exhaust gas purification. SAE Technical Papers. https://doi.org/10.4271/2000-01-0478

  60. Balomenou SP, Tsiplakides D, Vayenas CG, Poulston S, Houel V, Collier P, Konstandopoulos AG, Agrafiotis C (2007) Electrochemical promotion in a monolith electrochemical plate reactor applied to simulated and real automotive pollution control. Top Catal 44:481–486. https://doi.org/10.1007/s11244-006-0140-4

    Article  CAS  Google Scholar 

  61. Souentie S, Hammad A, Brosda S, Foti G, Vayenas CG (2008) Electrochemical promotion of NO reduction by C2H4 in 10% O2 using a monolithic electropromoted reactor with Rh/YSZ/Pt elements. J Appl Electrochem 38:1159–1170. https://doi.org/10.1007/s10800-008-9548-9

    Article  CAS  Google Scholar 

  62. Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2:206–211. https://doi.org/10.1021/jz1015372

    Article  CAS  Google Scholar 

  63. Klingmann J, Andersson M (2020) Hydrogen and hydrogen-rich fuels: production and conversion to electricity BT innovations in sustainable energy and cleaner environment. In: Gupta AK, De A, Aggarwal SK, Kushari A, Runchal A (eds) . Springer, Singapore, pp 219–233

    Google Scholar 

  64. Dodds PE, Staffell I, Hawkes AD, Li F, Grünewald P, McDowall W, Ekins P (2015) Hydrogen and fuel cell technologies for heating: a review. Int J Hydrog Energy 40:2065–2083. https://doi.org/10.1016/j.ijhydene.2014.11.059

    Article  CAS  Google Scholar 

  65. Khotseng L (2019) Fuel cell thermodynamics. Intech Open

    Google Scholar 

  66. Apostolou D, Xydis G (2019) A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renew Sust Energ Rev:113:109292. https://doi.org/10.1016/j.rser.2019.109292

  67. Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Ricco Galluzzo G (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494. https://doi.org/10.1016/j.ijhydene.2014.03.174

    Article  CAS  Google Scholar 

  68. Sengodan S, Lan R, Humphreys J, Du D, Xu W, Wang H, Tao S (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew Sust Energ Rev 82:761–780. https://doi.org/10.1016/j.rser.2017.09.071

    Article  CAS  Google Scholar 

  69. Busca G, Costantino U, Montanari T, Ramis G, Resini C, Sisani M (2010) Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni-Co-Zn-Al catalysts from hydrotalcite-like precursors. Int J Hydrog Energy 35:5356–5366. https://doi.org/10.1016/j.ijhydene.2010.02.124

    Article  CAS  Google Scholar 

  70. Megía PJ, Calles JA, Carrero A, Vizcaíno AJ (2020) Effect of the incorporation of reducibility promoters (Cu, Ce, Ag) in Co/CaSBA-15 catalysts for acetic acid steam reforming. Int J Energy Res 1:1–18. https://doi.org/10.1002/er.5832

    Article  CAS  Google Scholar 

  71. Chen S, Zaffran J, Yang B (2020) Dry reforming of methane over the cobalt catalyst: theoretical insights into the reaction kinetics and mechanism for catalyst deactivation. Appl Catal B Environ 270:118859–118868. https://doi.org/10.1016/j.apcatb.2020.118859

    Article  CAS  Google Scholar 

  72. Budiman AW, Song S-H, Chang T-S, Shin C-H, Choi M-J (2012) Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catal Surv Jpn 16:183–197. https://doi.org/10.1007/s10563-012-9143-2

    Article  CAS  Google Scholar 

  73. Osman AI (2020) Catalytic hydrogen production from methane partial oxidation: mechanism and kinetic study. Chem Eng Technol 43:641–648. https://doi.org/10.1002/ceat.201900339

    Article  CAS  Google Scholar 

  74. Hossain MZ, Charpentier PA (2015) Hydrogen production by gasification of biomass and opportunity fuels. In: Subramani V, Basile A, Veziroglu TN (eds) Compendium of hydrogen energy. Woodhead Publishing, pp 137–175

    Chapter  Google Scholar 

  75. Summa P, Samojeden B, Motak M (2019) Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review. Pol J Chem Technol 21:31–37. https://doi.org/10.2478/pjct-2019-0017

    Article  Google Scholar 

  76. de Souza VP, Costa D, dos Santos D, Sato AG, Bueno JMC (2012) Pt-promoted α-Al2O3-supported Ni catalysts: effect of preparation conditions on oxi-reduction and catalytic properties for hydrogen production by steam reforming of methane. Int J Hydrog Energy 37:9985–9993. https://doi.org/10.1016/J.IJHYDENE.2012.03.141

    Article  Google Scholar 

  77. Borowiecki T, Denis A, Rawski M, Gołębiowski A, Stołecki K, Dmytrzyk J, Kotarba A (2014) Studies of potassium-promoted nickel catalysts for methane steam reforming: effect of surface potassium location. Appl Surf Sci 300:191–200. https://doi.org/10.1016/j.apsusc.2014.02.053

    Article  CAS  Google Scholar 

  78. Borowiecki T, Gołębiowski A, Ryczkowski J, Stasmska B (1998) The influence of promoters on the coking rate of nickel catalysts in the steam reforming of hydrocarbons. Stud Surf Sci Catal 119:711–716. https://doi.org/10.1016/S0167-2991(98)80515-6

    Article  CAS  Google Scholar 

  79. Alstrup I, Clausen BS, Olsen C, Smits RHH, Rostrup-Nielsen JR (1998) Promotion of steam reforming catalysts. Stud Surf Sci Catal 119:5–14. https://doi.org/10.1016/S0167-2991(98)80402-3

    Article  CAS  Google Scholar 

  80. de Lucas-Consuegra A, Caravaca A, Martínez PJ, Endrino JL, Dorado F, Valverde JL (2010) Development of a new electrochemical catalyst with an electrochemically assisted regeneration ability for H2 production at low temperatures. J Catal 274:251–258. https://doi.org/10.1016/J.JCAT.2010.07.007

    Article  Google Scholar 

  81. Nurunnabi M, Mukainakano Y, Kado S, Miyazawa T, Okumura K, Miyao T, Naito S, Suzuki K, Fujimoto K-I, Kunimori K, Tomishige K (2006) Oxidative steam reforming of methane under atmospheric and pressurized conditions over Pd/NiO–MgO solid solution catalysts. Appl Catal A Gen 308:1–12. https://doi.org/10.1016/J.APCATA.2006.03.054

    Article  CAS  Google Scholar 

  82. Yentekakis IV, Jiang Y, Neophytides S, Bebelis S, Vayenas CG (1995) Catalysis, electrocatalysis and electrochemical promotion of the steam reforming of methane over Ni film and Ni-YSZ cermet anodes. Ionics 1:91-498. https://doi.org/10.1007/BF02375296

    Google Scholar 

  83. González-Cobos J, López-Pedrajas D, Ruiz-López E, Valverde JL, de Lucas-Consuegra A (2015) Applications of the electrochemical promotion of catalysis in methanol conversion processes. Top Catal 58:1290–1302. https://doi.org/10.1007/s11244-015-0493-7

    Article  CAS  Google Scholar 

  84. Deng W-Q, Xu X, Goddard WA (2004) New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. Phys Rev Lett 92:166103. https://doi.org/10.1103/PhysRevLett.92.166103

    Article  CAS  PubMed  Google Scholar 

  85. Espinós JP, Rico VJ, González-Cobos J, Sánchez-Valencia JR, Pérez-Dieste V, Escudero C, de Lucas-Consuegra A, González-Elipe AR (2018) In situ monitoring of the phenomenon of electrochemical promotion of catalysis. J Catal 358:27–34. https://doi.org/10.1016/j.jcat.2017.11.027

    Article  CAS  Google Scholar 

  86. Espinós JP, Rico VJ, González-Cobos J, Sánchez-Valencia JR, Pérez-Dieste V, Escudero C, De Lucas-Consuegra A, González-Elipe AR (2019) Graphene formation mechanism by the electrochemical promotion of a Ni catalyst. ACS Catal 11447–11454. https://doi.org/10.1021/acscatal.9b03820

  87. Van Den Berg AWC, Areán CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun:668–681. https://doi.org/10.1039/B712576N

  88. Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  89. Sapountzi FM, Gracia JM, Weststrate CJK-J, Fredriksson HOA, Niemantsverdriet JWH (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35. https://doi.org/10.1016/j.pecs.2016.09.001

    Article  Google Scholar 

  90. Shiva Kumar S, Himabindu V (2019) Hydrogen production by PEM water electrolysis – a review. Mater Sci Energy Technol 2:442–454. https://doi.org/10.1016/j.mset.2019.03.002

    Article  Google Scholar 

  91. Ni M, Leung MKH, Leung DYC (2008) Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int J Hydrog Energy 33:2337–2354. https://doi.org/10.1016/j.ijhydene.2008.02.048

    Article  CAS  Google Scholar 

  92. Lei L, Zhang J, Yuan Z, Liu J, Ni M, Chen F (2019) Progress report on proton conducting solid oxide electrolysis cells. Adv Funct Mater. https://doi.org/10.1002/adfm.201903805

  93. Sasikumar G, Muthumeenal A, Pethaiah SS, Nachiappan N, Balaji R (2008) Aqueous methanol electrolysis using proton conducting membrane for hydrogen production. Int J Hydrog Energy 33:5905–5910. https://doi.org/10.1016/j.ijhydene.2008.07.013

    Article  CAS  Google Scholar 

  94. Caravaca A, Sapountzi FM, De Lucas-Consuegra A, Molina-Mora C, Dorado F, Valverde JL (2012) Electrochemical reforming of ethanol-water solutions for pure H2 production in a PEM electrolysis cell. Int J Hydrog Energy 37:9504–9513. https://doi.org/10.1016/j.ijhydene.2012.03.062

    Article  CAS  Google Scholar 

  95. Caravaca A, De Lucas-Consuegra A, Calcerrada AB, Lobato J, Valverde JL, Dorado F (2013) From biomass to pure hydrogen: electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl Catal B Environ 134–135:302–309. https://doi.org/10.1016/j.apcatb.2013.01.033

  96. Calcerrada AB, de la Osa AR, Llanos J, Dorado F, de Lucas-Consuegra A (2018) Hydrogen from electrochemical reforming of ethanol assisted by sulfuric acid addition. Appl Catal B Environ 231:310–316. https://doi.org/10.1016/j.apcatb.2018.03.028

    Article  CAS  Google Scholar 

  97. Calcerrada AB, de la Osa AR, Lopez-Fernandez E, Dorado F, de Lucas-Consuegra A (2019) Influence of the carbon support on the Pt–Sn anodic catalyst for the electrochemical reforming of ethanol. Int J Hydrog Energy 44:10616–10626. https://doi.org/10.1016/j.ijhydene.2019.03.011

    Article  CAS  Google Scholar 

  98. Calcerrada AB, de la Osa AR, Dole HAE, Dorado F, Baranova EA, de Lucas-Consuegra A (2018) Stability testing of PtxSn1 − x/C anodic catalyst for renewable hydrogen production via electrochemical reforming of ethanol. Electrocatalysis 9:293–301. https://doi.org/10.1007/s12678-017-0428-0

    Article  CAS  Google Scholar 

  99. Gutiérrez-Guerra N, Jiménez-Vázquez M, Serrano-Ruiz JC, Valverde JL, de Lucas-Consuegra A (2015) Electrochemical reforming vs. catalytic reforming of ethanol: a process energy analysis for hydrogen production. Chem Eng Process Process Intensif 95:9–16. https://doi.org/10.1016/j.cep.2015.05.008

    Article  CAS  Google Scholar 

  100. Ruiz-López E, Amores E, Raquel de la Osa A, Dorado F, de Lucas-Consuegra A (2020) Electrochemical reforming of ethanol in a membrane-less reactor configuration. Chem Eng J. 379:122289. https://doi.org/10.1016/j.cej.2019.122289

  101. De Lucas-Consuegra A, De La Osa AR, Calcerrada AB, Linares JJ, Horwat D (2016) A novel sputtered Pd mesh architecture as an advanced electrocatalyst for highly efficient hydrogen production. J Power Sources 321:248–256. https://doi.org/10.1016/j.jpowsour.2016.05.004

    Article  CAS  Google Scholar 

  102. Simões M, Baranton S, Coutanceau C (2012) Electrochemical valorisation of glycerol. ChemSusChem 5:2106–2124. https://doi.org/10.1002/cssc.201200335

    Article  CAS  PubMed  Google Scholar 

  103. Coutanceau C, Baranton S, Kouamé RSB (2019) Selective electrooxidation of glycerol into value-added chemicals: a short overview. Front Chem 7:100. https://doi.org/10.3389/fchem.2019.00100

  104. Haisch T, Kubannek F, Baranton S, Coutanceau C, Krewer U (2019) The influence of adsorbed substances on alkaline methanol electro-oxidation. Electrochim Acta 295:278–285. https://doi.org/10.1016/j.electacta.2018.10.073

    Article  CAS  Google Scholar 

  105. Coutanceau C, Baranton S (2016) Electrochemical conversion of alcohols for hydrogen production: a short overview. Wiley Interdisciplinary Reviews: Energy and Environment 5:388–400. https://doi.org/10.1002/wene.193

    Article  CAS  Google Scholar 

  106. Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev 114:10697–10734. https://doi.org/10.1021/cr5000865

    Article  CAS  PubMed  Google Scholar 

  107. Caravaca A, De Lucas-Consuegra A, Molina-Mora C, Valverde JL, Dorado F (2011) Enhanced H2 formation by electrochemical promotion in a single chamber steam electrolysis cell. Appl Catal B Environ 106:54–62. https://doi.org/10.1016/j.apcatb.2011.05.004

  108. Ruiz-López E, Caravaca A, Vernoux P, Dorado F, de Lucas-Consuegra A (2020) Over-faradaic hydrogen production in methanol electrolysis cells. Chem Eng J 396:125217. https://doi.org/10.1016/J.CEJ.2020.125217

    Article  Google Scholar 

  109. Garcia-Garcia FJ, Yubero F, Espinós JP, González-Elipe AR, Lambert RM (2016) Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia – nickel anodes for application in solid electrolyte fuel cells. J Power Sources 324:679–686. https://doi.org/10.1016/j.jpowsour.2016.05.124

    Article  CAS  Google Scholar 

  110. Garcia-Garcia FJ, Beltrán AM, Yubero F, González-Elipe AR, Lambert RM (2017) High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells. J Power Sources 363:251–259. https://doi.org/10.1016/j.jpowsour.2017.07.085

    Article  CAS  Google Scholar 

  111. Garcia-Garcia FJ, Yubero F, González-Elipe AR, Balomenou SP, Tsiplakides D, Petrakopoulou I, Lambert RM (2015) Porous, robust highly conducting Ni-YSZ thin film anodes prepared by magnetron sputtering at oblique angles for application as anodes and buffer layers in solid oxide fuel cells. Int J Hydrog Energy 40:7382–7387. https://doi.org/10.1016/j.ijhydene.2015.04.001

    Article  CAS  Google Scholar 

  112. Ye R-P, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y, Russell CK, Xu Z, Russell AG, Li Q, Fan M, Yao Y-G (2019) CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun 10:5698. https://doi.org/10.1038/s41467-019-13638-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120:7984–8034. https://doi.org/10.1021/acs.chemrev.9b00723

    Article  CAS  PubMed  Google Scholar 

  114. Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE (2021) Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 7:849–881. https://doi.org/10.1016/j.chempr.2020.10.019

    Article  CAS  Google Scholar 

  115. Ojelade OA, Zaman SF (2021) A review on CO2 hydrogenation to lower olefins: understanding the structure-property relationships in heterogeneous catalytic systems. Journal of CO2 Utilization 47(101506). https://doi.org/10.1016/j.jcou.2021.101506

  116. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260. https://doi.org/10.1021/cr4000336

    Article  CAS  PubMed  Google Scholar 

  117. Zagoraios D, Panaritis C, Krassakopoulou A, Baranova EA, Katsaounis A, Vayenas CG (2020) Electrochemical promotion of Ru nanoparticles deposited on a proton conductor electrolyte during CO2 hydrogenation. Appl Catal B Environ 276:119148. https://doi.org/10.1016/j.apcatb.2020.119148

    Article  CAS  Google Scholar 

  118. Zagoraios D, Tsatsos S, Kennou S, Vayenas CG, Kyriakou G, Katsaounis A (2020) Tuning the RWGS reaction via EPOC and in situ electro-oxidation of cobalt nanoparticles. ACS Catal 10:14916–14927. https://doi.org/10.1021/acscatal.0c04133

    Article  CAS  Google Scholar 

  119. Chatzilias C, Martino E, Katsaounis A, Vayenas CG (2021) Electrochemical promotion of CO2 hydrogenation in a monolithic electrochemically promoted reactor (MEPR). Appl Catal B Environ 284:119695. https://doi.org/10.1016/j.apcatb.2020.119695

    Article  CAS  Google Scholar 

  120. Williams FJ, Lambert RM (2000) A study of sodium promotion in Fischer-Tropsch synthesis: electrochemical control of a ruthenium model catalyst. Catal Lett 70:9–14. https://doi.org/10.1023/a:1019023418300

    Article  CAS  Google Scholar 

  121. Urquhart AJ, Keel JM, Williams FJ, Lambert RM (2003) Electrochemical promotion by potassium of rhodium-catalyzed Fischer-Tropsch synthesis: XP spectroscopy and reaction studies. J Phys Chem B 107:10591–10597. https://doi.org/10.1021/jp035436q

    Article  CAS  Google Scholar 

  122. Urquhart AJ, Williams FJ, Lambert RM (2005) Electrochemical promotion by potassium of Rh-catalysed Fischer-Tropsch synthesis at high pressure. Catal Lett 103:137–141. https://doi.org/10.1007/s10562-005-6519-1

    Article  CAS  Google Scholar 

  123. Kotsiras A, Kalaitzidou I, Grigoriou D, Symillidis A, Makri M, Katsaounis A, Vayenas CG (2018) Electrochemical promotion of nanodispersed Ru-Co catalysts for the hydrogenation of CO2. Appl Catal B Environ 232:60–68. https://doi.org/10.1016/j.apcatb.2018.03.031

    Article  CAS  Google Scholar 

  124. Kalaitzidou I, Makri M, Theleritis D, Katsaounis A, Vayenas CG (2016) Comparative study of the electrochemical promotion of CO2 hydrogenation on Ru using Na+, K+, H+ and O2− conducting solid electrolytes. Surf Sci 646:194–203. https://doi.org/10.1016/j.susc.2015.09.011

    Article  CAS  Google Scholar 

  125. Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120:7984. https://doi.org/10.1021/acs.chemrev.9b00723

    Article  CAS  PubMed  Google Scholar 

  126. Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro JLG, Navarro RM (2019) Methanol synthesis from CO2: a review of the latest developments in heterogeneous catalysis. Materials 12:3902. https://doi.org/10.3390/ma12233902

    Article  CAS  PubMed Central  Google Scholar 

  127. Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ (2018) Ammonia for power. Prog Energy Combust Sci 69:63–102. https://doi.org/10.1016/j.pecs.2018.07.001

    Article  Google Scholar 

  128. Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9:62–73. https://doi.org/10.1039/C5EE02657A

    Article  CAS  Google Scholar 

  129. Saeidi S, Najari S, Hessel V, Wilson K, Keil FJ, Concepción P, Suib SL, Rodrigues AE (2021) Recent advances in CO2 hydrogenation to value-added products – Current challenges and future directions. Prog Energy Combust Sci 85:100905. https://doi.org/10.1016/j.pecs.2021.100905

  130. Niu J, Liu H, Jin Y, Fan B, Qi W, Ran J (2022) Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: insights from experimental work and theoretical analysis. Int J Hydrog Energy 47:9183–9200. https://doi.org/10.1016/j.ijhydene.2022.01.021

    Article  CAS  Google Scholar 

  131. Bansode A, Tidona B, von Rohr PR, Urakawa A (2013) Impact of K and Ba promoters on CO 2 hydrogenation over Cu/Al 2 O 3 catalysts at high pressure. Cat Sci Technol 3:767–778. https://doi.org/10.1039/C2CY20604H

    Article  CAS  Google Scholar 

  132. Díez-Ramírez J, Sánchez P, Valverde JL, Dorado F (2016) Electrochemical promotion and characterization of PdZn alloy catalysts with K and Na ionic conductors for pure gaseous CO2 hydrogenation. Journal of CO2 Utilization 16:375–383. https://doi.org/10.1016/j.jcou.2016.09.007

  133. Ruiz E, Cillero D, Martínez PJ, Morales Á, Vicente GS, de Diego G, Sánchez JM (2014) Electrochemical synthesis of fuels by CO2 hydrogenation on Cu in a potassium ion conducting membrane reactor at bench scale. Catal Today 236:108–120. https://doi.org/10.1016/j.cattod.2014.01.016

    Article  CAS  Google Scholar 

  134. Ruiz E, Martínez PJ, Morales Á, San Vicente G, de Diego G, Sánchez JM (2016) Electrochemically assisted synthesis of fuels by CO2 hydrogenation over Fe in a bench scale solid electrolyte membrane reactor. Catal Today 268:46–59. https://doi.org/10.1016/j.cattod.2016.02.025

    Article  CAS  Google Scholar 

  135. Ruiz E, Cillero D, Martínez PJ, Morales Á, Vicente GS, de Diego G, Sánchez JM (2014) Bench-scale study of electrochemically assisted catalytic CO2 hydrogenation to hydrocarbon fuels on Pt, Ni and Pd films deposited on YSZ. Journal of CO2 Utilization 8:1–20. https://doi.org/10.1016/j.jcou.2014.09.001

  136. Do TN, Kim J (2020) Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: process development and techno-economic analysis. Energy Convers Manag 214:112866. https://doi.org/10.1016/j.enconman.2020.112866

    Article  CAS  Google Scholar 

  137. Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C (2018) A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv 8:7651–7669. https://doi.org/10.1039/C7RA13546G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gholami Z, Gholami F, Tišler Z, Hubáček J, Tomas M, Bačiak M, Vakili M (2022) Production of light olefins via Fischer-Tropsch process using iron-based catalysts: a review. Catalysts 12:174. https://doi.org/10.3390/catal12020174

    Article  CAS  Google Scholar 

  139. Visconti CG, Martinelli M, Falbo L, Infantes-Molina A, Lietti L, Forzatti P, Iaquaniello G, Palo E, Picutti B, Brignoli F (2017) CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal B Environ 200:530–542. https://doi.org/10.1016/j.apcatb.2016.07.047

    Article  CAS  Google Scholar 

  140. Meiri N, Dinburg Y, Amoyal M, Koukouliev V, Nehemya RV, Landau MV, Herskowitz M (2015) Novel process and catalytic materials for converting CO 2 and H 2 containing mixtures to liquid fuels and chemicals. Faraday Discuss 183:197–215. https://doi.org/10.1039/C5FD00039D

    Article  CAS  PubMed  Google Scholar 

  141. Ramirez A, Gevers L, Bavykina A, Ould-Chikh S, Gascon J (2018) Metal organic framework-derived iron catalysts for the direct hydrogenation of CO 2 to short chain olefins. ACS Catal 8:9174–9182. https://doi.org/10.1021/acscatal.8b02892

    Article  CAS  Google Scholar 

  142. Martinelli M, Visconti CG, Lietti L, Forzatti P, Bassano C, Deiana P (2014) CO2 reactivity on Fe–Zn–Cu–K Fischer–Tropsch synthesis catalysts with different K-loadings. Catal Today 228:77–88. doi: https://doi.org/10.1016/j.cattod.2013.11.018

  143. Tsiakaras P, Vayenas CG (1993) Oxidative coupling of CH4 on Ag catalyst-electrodes deposited on ZrO2 (8 mol% Y2O3). J Catal 144:333–347. https://doi.org/10.1006/jcat.1993.1334

    Article  CAS  Google Scholar 

  144. Otsuka K, Yokoyama S, Morikawa A (1985) Catalytic activity- and selectivity-control for oxidative coupling of methane by oxygen-pumping through yttria-stabilized zirconia. Chem Lett 14:319–322. https://doi.org/10.1246/cl.1985.319

    Article  Google Scholar 

  145. Caravaca A, de Lucas-Consuegra A, González-Cobos J, Valverde JL, Dorado F (2012) Simultaneous production of H2 and C2 hydrocarbons by gas phase electrocatalysis. Appl Catal B Environ 113–114:192–200. https://doi.org/10.1016/j.apcatb.2011.11.037

    Article  CAS  Google Scholar 

  146. Caravaca A, de Lucas-Consuegra A, Ferreira VJ, Figueiredo JL, Faria JL, Valverde JL, Dorado F (2013) Coupling catalysis and gas phase electrocatalysis for the simultaneous production and separation of pure H2 and C2 hydrocarbons from methane and natural gas. Appl Catal B Environ 142–143:298–306. https://doi.org/10.1016/j.apcatb.2013.05.014

    Article  CAS  Google Scholar 

  147. Khechfe AA, Sullivan MM, Zagoraios D, Katsaounis A, Vayenas CG, Román-Leshkov Y (2022) Non-faradaic electrochemical promotion of Brønsted acid-catalyzed dehydration reactions over molybdenum oxide. ACS Catal 12:906–912. https://doi.org/10.1021/acscatal.1c04885

    Article  CAS  Google Scholar 

  148. Xi X, Zeng F, Zhang H, Wu X, Ren J, Bisswanger T, Stampfer C, Hofmann JP, Palkovits R, Heeres HJ (2021) CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe–In catalysts on a Ce–ZrO2 support. ACS Sustainable Chem. Eng. 9:6235–6249. https://doi.org/10.1021/acssuschemeng.0c08760

  149. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO 2 to chemicals, materials, and fuels. Technological use of CO 2. Chem Rev 114:1709–1742. https://doi.org/10.1021/cr4002758

    Article  CAS  PubMed  Google Scholar 

  150. Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J (2017) Status and prospects in higher alcohols synthesis from syngas. Chem Soc Rev 46:1358–1426. https://doi.org/10.1039/C6CS00324A

    Article  CAS  PubMed  Google Scholar 

  151. Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim J, Meng X, Xiao F (2018) Selective hydrogenation of CO 2 to ethanol over cobalt catalysts. Angew Chem Int Ed 57:6104–6108. https://doi.org/10.1002/anie.201800729

    Article  CAS  Google Scholar 

  152. Gupta M, Smith ML, Spivey JJ (2011) Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catal 1:641–656. https://doi.org/10.1021/cs2001048

    Article  CAS  Google Scholar 

  153. Li S, Guo H, Luo C, Zhang H, Xiong L, Chen X, Ma L (2013) Effect of iron promoter on structure and performance of K/Cu–Zn catalyst for higher alcohols synthesis from CO2 hydrogenation. Catal Lett 143:345–355. https://doi.org/10.1007/s10562-013-0977-7

    Article  CAS  Google Scholar 

  154. Guo H, Li S, Peng F, Zhang H, Xiong L, Huang C, Wang C, Chen X (2015) Roles investigation of promoters in K/Cu–Zn catalyst and higher alcohols synthesis from CO2 hydrogenation over a novel two-stage bed catalyst combination system. Catal Lett 145:620–630. https://doi.org/10.1007/s10562-014-1446-7

    Article  CAS  Google Scholar 

  155. Mardini N, Bicer Y (2021) Direct synthesis of formic acid as hydrogen carrier from CO2 for cleaner power generation through direct formic acid fuel cell. Int J Hydrog Energy 46:13050–13060. https://doi.org/10.1016/j.ijhydene.2021.01.124

    Article  CAS  Google Scholar 

  156. Eppinger J, Huang K-W (2017) Formic acid as a hydrogen energy carrier. ACS Energy Lett 2:188–195. https://doi.org/10.1021/acsenergylett.6b00574

    Article  CAS  Google Scholar 

  157. Schaub T (2018) CO2-based hydrogen storage: CO2 hydrogenation to formic acid, formaldehyde and methanol. Physical Sciences Reviews 3:20170015. https://doi.org/10.1515/psr-2017-0015

  158. An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139. https://doi.org/10.1016/j.jpowsour.2016.04.082

    Article  CAS  Google Scholar 

  159. Ma Z, Legrand U, Pahija E, Tavares JR, Boffito DC (2021) From CO2 to formic acid fuel cells. Ind Eng Chem Res 60:803–815. https://doi.org/10.1021/acs.iecr.0c04711

    Article  CAS  Google Scholar 

  160. Sun R, Liao Y, Bai S-T, Zheng M, Zhou C, Zhang T, Sels BF (2021) Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom. Energy Environ Sci 14:1247–1285. https://doi.org/10.1039/D0EE03575K

    Article  CAS  Google Scholar 

  161. Pan H, Heagy MD (2020) Photons to formate: a review on photocatalytic reduction of CO2 to formic acid. Nano 10:2422. https://doi.org/10.3390/nano10122422

    Article  CAS  Google Scholar 

  162. Cai F, Gao D, Zhou H, Wang G, He T, Gong H, Miao S, Yang F, Wang J, Bao X (2017) Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem Sci 8:2569–2573. https://doi.org/10.1039/C6SC04966D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ryu J, Surendranath Y (2020) Polarization-induced local pH swing promotes Pd-catalyzed CO2 hydrogenation. J Am Chem Soc 142:13384–13390. https://doi.org/10.1021/jacs.0c01123

    Article  CAS  PubMed  Google Scholar 

  164. Neophytides SG, Tsiplakides D, Stonehart P, Jaksic MM, Vayenas CG (1994) Electrochemical enhancement of a catalytic reaction in aqueous solution. Nature 370:45–47. https://doi.org/10.1038/370045a0

    Article  CAS  Google Scholar 

  165. Neophytides SG, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1996) Non-faradaic electrochemical modification of the catalytic activity of Pt for H2 oxidation in aqueous alkaline media. J Phys Chem 100:14803–14814. https://doi.org/10.1021/jp960971u

    Article  CAS  Google Scholar 

  166. Ploense L, Salazar M, Gurau B, Smotkin ES (1997) Proton spillover promoted isomerization of n-butylenes on Pd-black cathodes/nafion 117. J Am Chem Soc 119:11550–11551. https://doi.org/10.1021/ja9728841

    Article  CAS  Google Scholar 

  167. Sanabria-Chinchilla J, Asazawa K, Sakamoto T, Yamada K, Tanaka H, Strasser P (2011) Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J Am Chem Soc 133:5425–5431. https://doi.org/10.1021/ja111160r

    Article  CAS  PubMed  Google Scholar 

  168. Gorin CF, Beh ES, Kanan MW (2012) An electric field–induced change in the selectivity of a metal oxide–catalyzed epoxide rearrangement. J Am Chem Soc 134:186–189. https://doi.org/10.1021/ja210365j

    Article  CAS  PubMed  Google Scholar 

  169. Sienel G, Rieth R, Rowbottom KT (2000) Epoxides. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  170. Khatib SJ, Oyama ST (2015) Direct oxidation of propylene to propylene oxide with molecular oxygen: a review. Catal Rev 57:306–344. https://doi.org/10.1080/01614940.2015.1041849

    Article  CAS  Google Scholar 

  171. Teržan J, Huš M, Likozar B, Djinović P (2020) Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review. ACS Catal 10:13415–13436. https://doi.org/10.1021/acscatal.0c03340

    Article  CAS  Google Scholar 

  172. Blanckenberg A, Malgas-Enus R (2019) Olefin epoxidation with metal-based nanocatalysts. Catal Rev 61:27–83. https://doi.org/10.1080/01614940.2018.1492503

    Article  CAS  Google Scholar 

  173. Kalyoncu S, Düzenli D, Onal I, Seubsai A, Noon D, Senkan S, Say Z, Vovk EI, Ozensoy E (2015) NaCl-Promoted CuO–RuO2/SiO2 catalysts for propylene epoxidation with O2 at atmospheric pressures: a combinatorial micro-reactor study. Catal Lett 145:596–605. https://doi.org/10.1007/s10562-014-1454-7

  174. Ren Y, Sun X, Huang J, Zhang L, Zhang B, Haruta M, Lu A-H (2020) Dual-component sodium and Cesium promoters for Au/TS-1: enhancement of propene epoxidation with hydrogen and oxygen. Ind Eng Chem Res 59:8155–8163. https://doi.org/10.1021/acs.iecr.9b07011

    Article  CAS  Google Scholar 

  175. Lee EJ, Lee J, Seo Y-J, Lee JW, Ro Y, Yi J, Song IK (2017) Direct epoxidation of propylene to propylene oxide with molecular oxygen over Ag–Mo–W/ZrO2 catalysts. Catal Commun 89:156–160. https://doi.org/10.1016/j.catcom.2016.11.001

    Article  CAS  Google Scholar 

  176. Wang Y, Chu H, Zhu W, Zhang Q (2008) Copper-based efficient catalysts for propylene epoxidation by molecular oxygen. Catal Today 131:496–504. https://doi.org/10.1016/j.cattod.2007.10.022

    Article  CAS  Google Scholar 

  177. Wang Q, Zhan C, Zhou L, Fu G, Xie Z (2020) Effects of Cl− on Cu2O nanocubes for direct epoxidation of propylene by molecular oxygen. Catal Commun 135:105897. https://doi.org/10.1016/j.catcom.2019.105897

    Article  CAS  Google Scholar 

  178. Bere KE, Wakui Y, Niwa S, Shoji H, Sato K, Hamakawa S, Hanaoka T, Suzuki TM, Mizukami F (2007) Direct O 2 epoxidation of propylene by the membrane reactor loaded with Ag–Sr catalyst. Chem Lett 36:1170–1171. https://doi.org/10.1246/cl.2007.1170

    Article  CAS  Google Scholar 

  179. Kaloyannis AC, Pliangos CA, Yentekakis IV, Vayenas CG (1995) In situ controlled promotion of catalyst surfaces via solid electrolytes: ethylene oxidation on Rh and propylene oxidation on Pt. Ionics 1:159–164. https://doi.org/10.1007/BF02388675

    Article  CAS  Google Scholar 

  180. Kaloyannis A, Vayenas CG (1999) Non-faradaic electrochemical modification of catalytic activity: 12. Propylene oxidation on Pt. J Catal 182:37–47. https://doi.org/10.1006/jcat.1998.2311

    Article  CAS  Google Scholar 

  181. Fóti G, Bolzonella I, Bachelin D, Comninellis CH (2004) Relation between potential and catalytic activity of rhodium in propylene combustion. J Appl Electrochem 34:9–17. https://doi.org/10.1023/B:JACH.0000005575.92134.60

    Article  Google Scholar 

  182. Gaillard F, Li X, Uray M, Vernoux P (2004) Electrochemical promotion of propene combustion in air excess on perovskite catalyst. Catal Lett 96:177–183. https://doi.org/10.1023/B:CATL.0000030117.00142.3d

    Article  CAS  Google Scholar 

  183. Vernoux P, Gaillard F, Lopez C, Siebert E (2004) In-situ electrochemical control of the catalytic activity of platinum for the propene oxidation. Solid State Ionics 175:609–613. https://doi.org/10.1016/j.ssi.2004.01.075

    Article  CAS  Google Scholar 

  184. de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2007) Low-temperature propene combustion over Pt/K-βAl2O3 electrochemical catalyst: characterization, catalytic activity measurements, and investigation of the NEMCA effect. J Catal 251:474–484. https://doi.org/10.1016/j.jcat.2007.06.031

    Article  CAS  Google Scholar 

  185. Karoum R, Roche V, Pirovano C, Vannier R-N, Billard A, Vernoux P (2010) CGO-based electrochemical catalysts for low temperature combustion of propene. J Appl Electrochem 40:1867–1873. https://doi.org/10.1007/s10800-010-0156-0

    Article  CAS  Google Scholar 

  186. Ippolito D, Andersen KB, Hansen KK (2012) Electrochemical oxidation of propene by use of LSM15/CGO10 electrochemical reactor. J Electrochem Soc 159:P57. https://doi.org/10.1149/2.084206jes

    Article  CAS  Google Scholar 

  187. Fóti G, Lavanchy O, Comninellis C (2000) Electrochemical promotion of Rh catalyst in gas-phase reduction of NO by propylene. J Appl Electrochem 30:1223–1228. https://doi.org/10.1023/A:1026505829359

    Article  Google Scholar 

  188. Raptis C, Badas T, Tsiplakides D, Pliangos C, Vayenas CG (2000) Electrochemical promotion of NO reduction by C3H6 on Rh/YSZ catalyst—electrodes and investigation of the origin of the promoting action using TPD and WF measurements. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in surface science and catalysis. Elsevier, pp 1283–1288

    Google Scholar 

  189. Williams FJ, Tikhov MS, Palermo A, Macleod N, Lambert RM (2001) Electrochemical promotion of rhodium-catalyzed NO reduction by CO and by propene in the presence of oxygen. J Phys Chem B 105:2800–2808. https://doi.org/10.1021/jp004131y

    Article  CAS  Google Scholar 

  190. Vernoux P, Gaillard F, Karoum R, Billard A (2007) Reduction of nitrogen oxides over Ir/YSZ electrochemical catalysts. Appl Catal B Environ 73:73–83. https://doi.org/10.1016/j.apcatb.2006.06.009

    Article  CAS  Google Scholar 

  191. Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Appl Catal B Environ 73:42–50. https://doi.org/10.1016/j.apcatb.2006.12.001

    Article  CAS  Google Scholar 

  192. Lintanf A, Djurado E, Vernoux P (2008) Pt/YSZ electrochemical catalysts prepared by electrostatic spray deposition for selective catalytic reduction of NO by C3H6. Solid State Ionics 178:1998–2008. https://doi.org/10.1016/j.ssi.2008.01.008

    Article  CAS  Google Scholar 

  193. Stoukides M, Vayenas CG (1984) Electrocatalytic rate enhancement of propylene epoxidation on porous silver electrodes using a zirconia oxygen pump. J Electrochem Soc 131:839. https://doi.org/10.1149/1.2115710

    Article  CAS  Google Scholar 

  194. Bebelis S, Vayenas C (1992) Non-faradaic electrochemical modification of catalytic activity 6. Ethylene epoxidation on Ag deposited on stabilized ZrO2. J Catal 138:588–610. https://doi.org/10.1016/0021-9517(92)90309-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. González-Cobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Cobos, J., Caravaca, A., Kyriakou, V., Vernoux, P. (2023). Challenges for Applications of the Electrochemical Promotion of Catalysis. In: Vernoux, P., Vayenas, C.G. (eds) Recent Advances in Electrochemical Promotion of Catalysis. Modern Aspects of Electrochemistry, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-13893-5_9

Download citation

Publish with us

Policies and ethics