Skip to main content

Outlier Explanation Through Masking Models

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2022)

Abstract

Given a database and one single anomalous data point, the Outlying Aspect Mining problem consists in explaining the abnormality of that data point w.r.t. the data population stored in the input database. Thus, the problem requires the discovery of the sets of attributes and associated values that account for the abnormality of a data point within a given data set. In this setting, the abnormality of the data point at hand is stated beforehand, e.g., as the result of some outlier detection techniques (which, for the most part, do not provide information about why the selected data points are actually anomalous). This paper proposes a solution to the OAM problem exploiting a deep learning architecture. Besides explaining the input data point abnormality by singling out the smallest set of pairs attribute-value justifying it, our technique also provides new values for those attributes that would transform the input outlier into an inlier. Several experiments are also presented that assess the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/simona-nistico/MMOAM.

References

  1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016)

    Article  Google Scholar 

  2. Anderson, E.: The species problem in iris. Ann. Mo. Bot. Gard. 23(3), 457–509 (1936). http://www.jstor.org/stable/2394164

  3. Angiulli, F., Fassetti, F., Manco, G., Palopoli, L.: Outlying property detection with numerical attributes. Data Min. Knowl. Disc. 31(1), 134–163 (2016). https://doi.org/10.1007/s10618-016-0458-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Angiulli, F., Fassetti, F., Nisticò, S.: Finding local explanations through masking models. In: Yin, H., et al. (eds.) IDEAL 2021. LNCS, vol. 13113, pp. 467–475. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91608-4_46

    Chapter  Google Scholar 

  5. Angiulli, F., Fassetti, F., Palopoli, L.: Detecting outlying properties of exceptional objects. ACM Trans. Database Syst. (TODS) 34(1), 1–62 (2009)

    Article  Google Scholar 

  6. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  7. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y., Wells, J.R.: Isolation-based anomaly detection using nearest-neighbor ensembles. Comput. Intell. 34(4), 968–998 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bennett, K.P., Mangasarian, O.L.: Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw. 1(1), 23–34 (1992)

    Article  Google Scholar 

  9. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutor. 16(1), 303–336 (2014). https://doi.org/10.1109/SURV.2013.052213.00046

    Article  Google Scholar 

  10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey. IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012). https://doi.org/10.1109/TKDE.2010.235

    Article  Google Scholar 

  11. Cunningham, P., Delany, S.J.: K-nearest neighbour classifiers - a tutorial. ACM Comput. Surv. 54(6), 1–25 (2021). https://doi.org/10.1145/3459665

    Article  Google Scholar 

  12. Dang, X.H., Assent, I., Ng, R.T., Zimek, A., Schubert, E.: Discriminative features for identifying and interpreting outliers. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 88–99. IEEE (2014)

    Google Scholar 

  13. Duan, L., Tang, G., Pei, J., Bailey, J., Campbell, A., Tang, C.: Mining outlying aspects on numeric data. Data Min. Knowl. Disc. 29(5), 1116–1151 (2015). https://doi.org/10.1007/s10618-014-0398-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Duraj, A., Chomatek, L.: Supporting breast cancer diagnosis with multi-objective genetic algorithm for outlier detection. In: Kościelny, J.M., Syfert, M., Sztyber, A. (eds.) DPS 2017. AISC, vol. 635, pp. 304–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64474-5_25

    Chapter  Google Scholar 

  15. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  16. Hauskrecht, M., Batal, I., Valko, M., Visweswaran, S., Cooper, G.F., Clermont, G.: Outlier detection for patient monitoring and alerting. J. Biomed. Inform. 46(1), 47–55 (2013)

    Article  Google Scholar 

  17. Hilal, W., Gadsden, S.A., Yawney, J.: A review of anomaly detection techniques and applications in financial fraud. Expert Syst. Appl. 116429 (2021)

    Google Scholar 

  18. Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 831–838. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_86

    Chapter  Google Scholar 

  19. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 251–261 (2003)

    Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  21. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  22. Micenková, B., Ng, R.T., Dang, X.H., Assent, I.: Explaining outliers by subspace separability. In: 2013 IEEE 13th International Conference on Data Mining, pp. 518–527. IEEE (2013)

    Google Scholar 

  23. Narayanan, V., Bobba, R.B.: Learning based anomaly detection for industrial arm applications. In: Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, pp. 13–23 (2018)

    Google Scholar 

  24. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2), 1–38 (2021). https://doi.org/10.1145/3439950

    Article  Google Scholar 

  25. Samariya, D., Aryal, S., Ting, K.M., Ma, J.: A new effective and efficient measure for outlying aspect mining. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 463–474. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_32

    Chapter  Google Scholar 

  26. Samariya, D., Ma, J., Aryal, S.: A comprehensive survey on outlying aspect mining methods. arXiv preprint arXiv:2005.02637 (2020)

  27. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Routledge, Milton Park (2018)

    Book  Google Scholar 

  28. Steinwart, I., Hush, D., Scovel, C.: A classification framework for anomaly detection. J. Mach. Learn. Res. 6(2) (2005)

    Google Scholar 

  29. Vinh, N.X., Chan, J., Bailey, J., Leckie, C., Ramamohanarao, K., Pei, J.: Scalable outlying-inlying aspects discovery via feature ranking. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078, pp. 422–434. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18032-8_33

    Chapter  Google Scholar 

  30. Vinh, N.X., Chan, J., Romano, S., Bailey, J., Leckie, C., Ramamohanarao, K., Pei, J.: Discovering outlying aspects in large datasets. Data Min. Knowl. Disc. 30(6), 1520–1555 (2016). https://doi.org/10.1007/s10618-016-0453-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, X., Yin, M.: Are explanations helpful? A comparative study of the effects of explanations in AI-assisted decision-making. In: 26th International Conference on Intelligent User Interfaces, pp. 318–328 (2021)

    Google Scholar 

  32. Wells, J.R., Ting, K.M.: A new simple and efficient density estimator that enables fast systematic search. Pattern Recogn. Lett. 122, 92–98 (2019)

    Article  Google Scholar 

  33. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

  34. Zhang, J., Lou, M., Ling, T.W., Wang, H.: Hos-miner: a system for detecting outlying subspaces of high-dimensional data. In: Proceedings of the 30th International Conference on Very Large Data Bases (VLDB 2004), pp. 1265–1268. Morgan Kaufmann Publishers Inc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Nisticò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angiulli, F., Fassetti, F., Nisticò, S., Palopoli, L. (2022). Outlier Explanation Through Masking Models. In: Chiusano, S., Cerquitelli, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2022. Lecture Notes in Computer Science, vol 13389. Springer, Cham. https://doi.org/10.1007/978-3-031-15740-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15740-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15739-4

  • Online ISBN: 978-3-031-15740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics