Skip to main content

RefineNet: An Automated Framework to Generate Task and Subject-Specific Brain Parcellations for Resting-State fMRI Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Parcellations used in resting-state fMRI (rs-fMRI) analyses are derived from group-level information, and thus ignore both subject-level functional differences and the downstream task. In this paper, we introduce RefineNet, a Bayesian-inspired deep network architecture that adjusts region boundaries based on individual functional connectivity profiles. RefineNet uses an iterative voxel reassignment procedure that considers neighborhood information while balancing temporal coherence of the refined parcellation. We validate RefineNet on rs-fMRI data from three different datasets, each one geared towards a different predictive task: (1) cognitive fluid intelligence prediction using the HCP dataset (regression), (2) autism versus control diagnosis using the ABIDE II dataset (classification), and (3) language localization using an rs-fMRI brain tumor dataset (segmentation). We demonstrate that RefineNet improves the performance of existing deep networks from the literature on each of these tasks. We also show that RefineNet produces anatomically meaningful subject-level parcellations with higher temporal coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Biswal, F. Zerrin Yetkin, V. M. Haughton, and J. S. Hyde, "Functional connectivity in the motor cortex of resting human brain using echo-planar mri," Magnetic resonance in medicine, vol. 34, no. 4, pp. 537–541, 1995

    Google Scholar 

  2. van Oort, E.S., et al.: Functional parcellation using time courses of instantaneous connectivity. Neuroimage 170, 31–40 (2018)

    Article  Google Scholar 

  3. Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: Ensemble learning with 3d convolutional neural networks for functional connectome-based prediction. Neuroimage 199, 651–662 (2019)

    Article  Google Scholar 

  4. Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  5. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Google Scholar 

  6. Wang, D., et al.: Parcellating cortical functional networks in individuals. Nat. Neurosci. 18(12), 1853 (2015)

    Article  Google Scholar 

  7. Chong, M., et al.: Individual parcellation of resting FMRI with a group functional connectivity prior. Neuroimage 156, 87–100 (2017)

    Article  MathSciNet  Google Scholar 

  8. Nandakumar, N., et al.: Defining patient specific functional parcellations in Lesional Cohorts via Markov random fields. In: Wu, G., Rekik, I., Schirmer, M.D., Chung, A.W., Munsell, B. (eds.) CNI 2018. LNCS, vol. 11083, pp. 88–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00755-3_10

    Chapter  Google Scholar 

  9. Esposito, F., et al.: Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fmri. Magn. Reson. Imaging 26(7), 905–913 (2008)

    Article  Google Scholar 

  10. Tessitore, A., et al.: Default-mode network connectivity in cognitively unimpaired patients with parkinson disease. Neurology 79(23), 2226–2232 (2012)

    Article  Google Scholar 

  11. Calhoun, V.D., Adali, T.: Multisubject independent component analysis of FMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73 (2012)

    Article  Google Scholar 

  12. Sair, H.I., et al.: Presurgical brain mapping of the language network in patients with brain tumors using resting-state FMRI: comparison with task f MRI. Hum. Brain Mapp. 37(3), 913–923 (2016)

    Article  Google Scholar 

  13. Kazemivash, B., Calhoun, V.D.: A novel 5d brain parcellation approach based on spatio-temporal encoding of resting FMRI data from deep residual learning. J. Neurosci. Methods, 109478 (2022)

    Google Scholar 

  14. Van Essen, D.C., et al.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  15. Di Martino, A., et al.: Enhancing studies of the connectome in autism using the autism brain imaging data exchange ii. Sci. Data 4(1), 1–15 (2017)

    Article  Google Scholar 

  16. Dsouza, N.S., Nebel, M.B., Crocetti, D., Robinson, J., Mostofsky, S., Venkataraman, A.: M-GCN: a multimodal graph convolutional network to integrate functional and structural connectomics data to predict multidimensional phenotypic characterizations. In: Medical Imaging with Deep Learning, pp. 119–130, PMLR (2021)

    Google Scholar 

  17. Smith, S.M., et al.: Resting-state FMRI in the human connectome project. Neuroimage 80, 144–168 (2013)

    Article  Google Scholar 

  18. Zhang, J., Feng, F., Han, T., Gong, X., Duan, F.: Detection of autism spectrum disorder using FMRI functional connectivity with feature selection and deep learning. Cognitive Computation, pp. 1–12 (2022)

    Google Scholar 

  19. Craddock, C., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front. Neuroinform. 42, 10–3389 (2013)

    Google Scholar 

  20. Nandakumar, N., et al.: A novel graph neural network to localize eloquent cortex in brain tumor patients from resting-state fMRI connectivity. In: Schirmer, M.D., Venkataraman, A., Rekik, I., Kim, M., Chung, A.W. (eds.) CNI 2019. LNCS, vol. 11848, pp. 10–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32391-2_2

    Chapter  Google Scholar 

  21. Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (compcor) for bold and perfusion based FMRI. Neuroimage 37(1), 90–101 (2007)

    Article  Google Scholar 

  22. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical parametric mapping: the analysis of functional brain images. Elsevier (2011)

    Google Scholar 

  23. Fan, L., et al.: The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26(8), 3508–3526 (2016)

    Article  Google Scholar 

  24. Craddock, R.C., James, G.A., Holtzheimer, P.E., III., Hu, X.P., Mayberg, H.S.: A whole brain FMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    Article  Google Scholar 

  25. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  26. Bouckaert, R.R., Frank, E.: Evaluating the replicability of significance tests for comparing learning algorithms. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 3–12. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_3

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation CAREER award 1845430 (PI: Venkataraman) and the Research & Education Foundation Carestream Health RSNA Research Scholar Grant RSCH1420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Nandakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nandakumar, N., Manzoor, K., Agarwal, S., Sair, H.I., Venkataraman, A. (2022). RefineNet: An Automated Framework to Generate Task and Subject-Specific Brain Parcellations for Resting-State fMRI Analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics